CSCI 136
 Data Structures \&
 Advanced Programming

Trees
Graph Interface
Depth-First Search

Outline

- Recap of Breadth-First Search
- Trees
- The Graph Interface
- Depth-First Search

Reachability and Connectedness

Recall

- A vertex u in G is reachable from a vertex v in G if there is a path from v to u
- G is connected if, for every vertex v, every vertex u is reachable from v

Alternate Definition

- G is connected if, for some vertex v, every vertex u of G is reachable from v
- Exercise: Figure out why this is true!

Testing Connectedness: BFS

Recall

- A simple, queue-driven search (Breadth-First Search) of a graph G, starting at a vertex v, can find all vertices reachable from v
- See previous presentation
- G is connected if and only if all vertices are reached by the BFS
- BFS can also find shortest paths from v to every other vertex
- These paths form a tree

BFS Reflections : Example

Assuming neighbors are visited alphabetically

Trees

Def'n: A graph $G=(V, E)$ is a tree if

- G is connected
- G contains no cycles

Note

- Not the same concept as the tree data structure
- There is no root
- There is no hierarchical relationship

Trees: Equivalent Definitions

Try these at home

- $G=(V, E)$ is a tree if and only if
- G is connected
- For every edge e in E , removing E disconnects G
- $G=(V, E)$ is a tree if and only if
- G is connected
- G has exactly one more vertex than edge : $|\mathrm{E}|=|\mathrm{V}|-\mathrm{I}$
- $G=(V, E)$ is a tree if and only if
- For every two vertices u, v in V , there is exactly one path between u and v

Implementation with Graph Interface

What are the basic operations we need to describe the BFS method?

- Get a list of the vertices adjacent to v
- Mark a vertex as visited
- Add a vertex (to build the BFS tree)
- Add an edge (to build the BFS tree)

Graph Interface

- Supports storing a value at each vertex and edge
- Called a label
- Can be any object
- Supports methods for
- get vertex/edge value
- adding/removing vertices/edges
- searching for vertex/edge labels
- changing/querying 'visited' state of vertices/edges
- producing iterators to vertices, neighbors, edges

Graph Interface Methods

- void add(V vtx), V remove(V vtx$)$
- Add/remove vertex to/from graph
- void addEdge(V vtxI, V vtx2, E edgeLabel),

E removeEdge(V vtxI, V vtx2)

- Add/remove edge between vtxI and vtx2
- boolean containsEdge(V vtx $\mathrm{I}, \mathrm{V} \mathrm{vtx} 2$)
- Returns true iff there is an edge between $v t x I$ and $v t x 2$
- Edge<V,E> getEdge(V vtx I, V vtx2)
- Returns edge between vtx I and vtx 2
- void clear()
- Remove all nodes (and edges) from graph

Graph Interface Methods

- boolean visit(V vertexLabel)
- Mark vertex as "visited" and return previous value of visited flag
- boolean visitEdge(Edge<V,E> e)
- Mark edge as "visited"
- boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)
- Returns true iff vertex/edge has been visited
- Iterator<V> neighbors(V vtxI)
- Get iterator for all neighbors of vtxl
- For directed graphs, out-edges only
- Iterator<V> iterator()
- Get vertex iterator
- void reset()
- Remove visited flags for all nodes/edges

Edge Class : Partial Description

- Graph edges are defined in their own public class
- Edge<V,E>(V vtx1, V vtx2, E label)
- Construct a (possibly directed) edge between the two vertices having labels vtx I and vtx 2
- Useful methods:
label(), here(), there()
label(), setLabel()
visit(), isVisited()

Reachability: Breadth-First Traversal

BFS $(G, v) \quad / /$ Do a breadth-first search of G starting at v // pre: all vertices are marked as unvisited count $\leftarrow 0$;
Create empty queue Q; enqueue v; mark v as visited; count++ While Q isn't empty
current \leftarrow Q.dequeue();
for each unvisited neighbor u of current:

$$
\text { add u to } Q \text {; mark u as visited; count }{ }^{++}
$$

return count;

Reachability: Breadth-First Traversal

$B F S(G, v)$
create empty queue Q
count \leqslant; ;
enqueue v; mark vas visited
count++
while Q isn't empty
cur \leftarrow Q.dequeue();
for each unvisited neighbor u of cur add u to Q
mark u as visited
count ${ }^{++}$
return count;

```
int BFS(Graph<V,E> g, V src) {
    Queue<V> todo = new
    QueueList<V>();
        int count = 0;
    todo.enqueue(src);
    g.visit(src);
    count++;
    while (!todo.isEmpty()) {
        V node = todo.dequeue();
        Iterator<V> neighbors =
        g.neighbors(node);
    while (neighbors.hasNext() ) {
        V next = neighbors.next();
        if (!g.isVisited(next)) {
        todo.enqueue(next);
        g.visit(next); count++;
} } }
    return count;
}

\section*{Breadth-First Traversal}
```

int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) {
g.visit(next); count++;
todo.enqueue(next);
}
}
}
return count;
}

```

\section*{Breadth-First Traversal of Edges}
```

int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.isVisited(next)) {
g.visit(next); count++;
todo.enqueue(next);
}
}
}
return count;
}

```

\section*{Creating a Graph}
```

Graph<String,Integer> g = new
g.add("A");
g.add("B");
g.add("C");
g.add("D");
g.add("E");
g.addEdge("A","B", 1);
g.addEdge("A","C", 1);
g.addEdge("B","C", 1);
g.addEdge("C","D", 1);
g.addEdge("D","B", 1);
g.addEdge("D","E", 1);
g.addEdge("E","A", 1);

```
    GraphListUndirected<String,Integer>();


\section*{Depth-First Search for Graphs}

\section*{Reachability II : Depth-First Search}

Suppose we replace the queue used in the Breadth-First Search algorithm with a stack It turns out that
- We still visit exactly the vertices reachable from the starting vertex
- The algorithm is equally efficient (Big-O sense)
- The order in which vertices are visited is very different

\section*{Reachability II : Depth-First Search}

DFS(G, v) // Do a depth-first search of G starting at v
// pre: all vertices are marked as unvisited
count \(\leftarrow O\);
Create empty stack S; push v; mark v as visited; count++;
While S isn't empty
current \(\leftarrow\) S.pop();
for each unvisited neighbor u of current : add u to S; mark u as visited; count++
return count;

\section*{Reachability II : Depth-First Search}
\(\operatorname{DFS}(G, v)\)
create empty stack \(S\)
count \(\leftarrow 0\);
push v onto S; mark v as visited
count \({ }^{++}\)
while S isn't empty
cur \(\leftarrow\) S.pop();
for each unvisited neighbor u of cur
push u onto \(S\)
mark u as visited
count++
return count;
```

int DFS(Graph<V,E> g, V src) {
Stack<V> todo = new
StackList<V>();
int count = 0;
todo.push(src);
g.visit(src);
count++;
while (!todo.isEmpty()) {
V node = todo.pop();
Iterator<v> neighbors =
g.neighbors(node);
while (neighbors.hasNext()){
V next = neighbors.next();
if (!g.isVisited(next)) {
todo.push(next);
g.visit(next); count++;
} } }
return count;
}

Reachability II : Depth-First Search

```
public static <V,E> int DFS(Graph<V,E> g, V src) {
    Stack<V> todo = new StackList<V>(); int count = 0;
    g.visit(src); count++;
    todo.push(src);
    while (!todo.isEmpty()) {
        V node = todo.pop();
        Iterator<V> neighbors = g.neighbors(node);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisited(next)) {
                g.visit(next); count++;
                todo.push(next);
            }
    }
}
return count;
}
```


DFS Reflections

- The DFS algorithm traces out a tree different from that produced by BFS
- It still consists of the edges connecting a visited vertex to (as yet) unvisited neighbors
- It is called a DFS tree of G with root v (or from v)
- Vertices are processed in (a variant of) preorder w.r.t. the tree
- By manipulating the stack differently, we could produce a post-order version of DFS
- And perhaps write DFS recursively....

DFS : Example

Assuming neighbors are stacked in reverse order

Reachability III : Recursive DFS

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
$D F S(G, v)$
Mark v as visited; count $=1$;
for each unvisited neighbor u of v:

$$
\text { count }+=\operatorname{DFS}(G, u) \text {; }
$$

return count;

Reachability III : Recursive DFS

$D F S(G, v)$

```
public static <V,E> int
DFS(Graph<V,E> g, V src) {
```

```
g.visit(src);
int count = 1;
```

Iterator<V> neighbors =
g.neighbors(src);
while (neighbors.hasNext()) \{
V next $=$ neighbors.next();

```
    if (!g.isVisited(next))
        count+= DFS(g, next);
```

 \}
 return count;
 \}

Reachability III : Recursive DFS

```
public static <V,E> int DFS(Graph<V,E> g, V src) {
    g.visit(src);
    int count = 1;
    Iterator<V> neighbors = g.neighbors(src);
    while (neighbors.hasNext()) {
        V next = neighbors.next();
        if (!g.isVisited(next)) count+= DFS(g, next);
    }
    return count;
}
```


Summary \& Observations

- Two different methods to traverse a connected component of a graph
- Breadth-First Search
- Explores short paths from v before long paths
- Depth-First Search
- Explores longest paths possible
- Graph Interface
- Allows writing of Graph algorithms based on local structure of graph
- Independent of implementation of graph structure
- Coming up: Directed Graphs \& Implementations!

