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CSCI 136
Data Structures &

Advanced Programming

Trees
Graph Interface

Depth-First Search
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Outline

• Recap of Breadth-First Search
• Trees
• The Graph Interface
• Depth-First Search
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Reachability and Connectedness

Recall
• A vertex u in G is reachable from a vertex v in 

G if there is a path from v to u
• G is connected if, for every vertex v, every 

vertex u is reachable from v
Alternate Definition
• G is connected if, for some vertex v, every

vertex u of G is reachable from v
• Exercise: Figure out why this is true!
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Testing Connectedness : BFS

Recall
• A simple, queue-driven search (Breadth-First 

Search) of a graph G, starting at a vertex v, 
can find all vertices reachable from v
• See previous presentation

• G is connected if and only if all vertices are 
reached by the BFS

• BFS can also find shortest paths from v to 
every other vertex

• These paths form a tree
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BFS Reflections : Example

Assuming neighbors are visited alphabetically
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Trees
Def'n: A graph G=(V,E) is a 
tree if
• G is connected
• G contains no cycles
Note
• Not the same concept as 

the tree data structure
• There is no root
• There is no hierarchical 

relationship
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Trees : Equivalent Definitions

Try these at home
• G = (V, E) is a tree if and only if
• G is connected
• For every edge e in E, removing E disconnects G

• G = (V, E) is a tree if and only if
• G is connected
• G has exactly one more vertex than edge : |E| = |V| - 1

• G = (V, E) is a tree if and only if
• For every two vertices u, v in V, there is exactly one 

path between u and v
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Implementation with Graph Interface

What are the basic operations we need to 
describe the BFS method?
• Get a list of the vertices adjacent to v

• Mark a vertex as visited
• Add a vertex (to build the BFS tree)
• Add an edge (to build the BFS tree) 
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Graph Interface

• Supports storing a value at each vertex and edge
• Called a label
• Can be any object

• Supports methods for
• get vertex/edge value
• adding/removing vertices/edges
• searching for vertex/edge labels

• changing/querying 'visited' state of vertices/edges
• producing iterators to vertices, neighbors, edges
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Graph Interface Methods
• void add(V vtx), V remove(V vtx)

• Add/remove vertex to/from graph

• void addEdge(V vtx1, V vtx2, E edgeLabel), 

E removeEdge(V vtx1, V vtx2)   

• Add/remove edge between vtx1 and vtx2

• boolean containsEdge(V vtx1, V vtx2)

• Returns true iff there is an edge between vtx1 and vtx2

• Edge<V,E> getEdge(V vtx1, V vtx2)

• Returns edge between vtx1 and vtx2

• void clear()

• Remove all nodes (and edges) from graph
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Graph Interface Methods
• boolean visit(V vertexLabel)

• Mark vertex as “visited” and return previous value of visited flag
• boolean visitEdge(Edge<V,E> e)

• Mark edge as “visited”

• boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)
• Returns true iff vertex/edge has been visited

• Iterator<V> neighbors(V vtx1)
• Get iterator for all neighbors of vtx1
• For directed graphs, out-edges only

• Iterator<V> iterator()
• Get vertex iterator

• void reset()
• Remove visited flags for all nodes/edges
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Edge Class : Partial Description

• Graph edges are defined in their own public class
• Edge<V,E>(V vtx1, V vtx2,  E label)

• Construct a (possibly directed) edge between the two 
vertices  having labels vtx1 and vtx2

• Useful methods: 
label(), here(), there()
label(), setLabel()
visit(), isVisited()
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Reachability: Breadth-First Traversal

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u  of current :

add u to Q; mark u as visited; count++
return count;
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Reachability: Breadth-First Traversal
BFS(G, v)
create empty queue Q
count ß0;
enqueue v; mark v as visited
count++
while Q isn’t empty

cur ßQ.dequeue();
for each unvisited neighbor u  of cur 

add u to Q
mark u as visited
count++

return count;

int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new 
QueueList<V>();
int count = 0;

todo.enqueue(src); 
g.visit(src);
count++;
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = 
g.neighbors(node);
while (neighbors.hasNext()){

V next = neighbors.next();
if (!g.isVisited(next)) {

todo.enqueue(next);
g.visit(next); count++;

} } }
return count;

}



16

Breadth-First Traversal
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src); 
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}
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Breadth-First Traversal of Edges
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src); 
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}
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Creating a Graph
Graph<String,Integer> g = new 

GraphListUndirected<String,Integer>();

g.add("A");
g.add("B");
g.add("C");
g.add("D");
g.add("E");

g.addEdge("A","B", 1);
g.addEdge("A","C", 1);
g.addEdge("B","C", 1);
g.addEdge("C","D", 1);
g.addEdge("D","B", 1);
g.addEdge("D","E", 1);
g.addEdge("E","A", 1);

A

B

CD

E



19

Depth-First Search for Graphs
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Reachability II : Depth-First Search

Suppose we replace the queue used in the 
Breadth-First Search algorithm with a stack
It turns out that
• We still visit exactly the vertices reachable 

from the starting vertex
• The algorithm is equally efficient (Big-O sense)
• The order in which vertices are visited is very 

different
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Reachability II : Depth-First Search

DFS(G, v) // Do a depth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty stack S; push v; mark v as visited; count++;
While S isn’t empty

current ßS.pop();
for each unvisited neighbor u  of current : 

add u to S; mark u as visited; count++
return count;
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Reachability II : Depth-First Search
DFS(G, v)
create empty stack S
count ß0;
push v onto S; mark v as visited
count++
while S isn’t empty

cur ßS.pop();
for each unvisited neighbor u  of cur 

push u onto S
mark u as visited
count++

return count;

int DFS(Graph<V,E> g, V src) {
Stack<V> todo = new 
StackList<V>();
int count = 0;

todo.push(src); 
g.visit(src);
count++;
while (!todo.isEmpty()) {
V node = todo.pop();
Iterator<V> neighbors = 
g.neighbors(node);
while (neighbors.hasNext()){

V next = neighbors.next();
if (!g.isVisited(next)) {

todo.push(next);
g.visit(next); count++;

} } }
return count;

}



23

Reachability II : Depth-First Search
public static <V,E> int DFS(Graph<V,E> g, V src) {

Stack<V> todo = new StackList<V>(); int count = 0;
g.visit(src); count++;
todo.push(src); 
while (!todo.isEmpty()) {
V node = todo.pop();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) {
g.visit(next); count++;
todo.push(next);

}
}

}
return count;

}
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DFS Reflections
• The DFS algorithm traces out a tree different 

from that produced by BFS
• It still consists of the edges connecting a visited 

vertex to (as yet) unvisited neighbors

• It is called a DFS tree of G with root v (or from v)
• Vertices are processed in (a variant of) pre-

order w.r.t. the tree
• By manipulating the stack differently, we could 

produce a post-order version of DFS
• And perhaps write DFS recursively….
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DFS : Example

Assuming neighbors are stacked in reverse order
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Reachability III : Recursive DFS

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count = 1;
for each unvisited neighbor u of v: 

count += DFS(G,u);
return count;
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Reachability III : Recursive DFS
DFS(G, v)

Mark v as visited

count = 1;

for each unvisited neighbor u of v: 

count += DFS(G,u);

return count;

public static <V,E> int 
DFS(Graph<V,E> g, V src) {

g.visit(src);

int count = 1;

Iterator<V> neighbors = 
g.neighbors(src);

while (neighbors.hasNext()) {
V next = neighbors.next();

if (!g.isVisited(next)) 
count+= DFS(g, next);

}

return count;
}
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Reachability III : Recursive DFS

public static <V,E> int DFS(Graph<V,E> g, V src) {
g.visit(src);
int count = 1;
Iterator<V> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) count+= DFS(g, next);

}
return count;

}
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Summary & Observations
• Two different methods to traverse a connected 

component of a graph
• Breadth-First Search

• Explores short paths from v before long paths

• Depth-First Search
• Explores longest paths possible

• Graph Interface
• Allows writing of Graph algorithms based on local 

structure of graph
• Independent of implementation of graph structure

• Coming up: Directed Graphs & Implementations!


