CSCI 136
Data Structures &
Advanced Programming

Trees
Graph Interface
Depth-First Search

Qutline

Recap of Breadth-First Search
Trees

The Graph Interface
Depth-First Search

Reachability and Connectedness

Recall

e A vertex uin G is reachable from a vertex v in
G if there is a path from v to u

* G is connected if, for every vertex v, every
vertex U is reachable from v
Alternate Definition

* G is connected if, for some vertex v, every
vertex u of G is reachable from v

* Exercise: Figure out why this is true!

Testing Connectedness : BFS

Recall

* A simple, queue-driven search (Breadth-First
Search) of a graph G, starting at a vertex v,
can find all vertices reachable from v

e See previous presentation

* G is connected if and only if all vertices are
reached by the BFS

e BFS can also find shortest paths from v to
every other vertex

* These paths form a tree

BFS Reflections : Example

Assuming neighbors are visited alphabetically

Trees

Defn: A graph G=(V,E) is a
tree if

* G is connected

* G contains no cycles
Note

* Not the same concept as
the tree data structure

e There is no root

e There is no hierarchical
relationship

Trees : Equivalent Definitions

Try these at home
e G=(V,E)is atree if and only if
e G is connected
* For every edge e in E, removing E disconnects G
e G=(V,E)is atree if and only if
* G is connected
* G has exactly one more vertex than edge : |E| = |V] - |
e G=(V,E)is atree if and only if

* For every two vertices u, v in V, there is exactly one
path between u and v

Implementation with Graph Interface

What are the basic operations we need to
describe the BFS method?

* Get a list of the vertices adjacent to v

 Mark a vertex as visited
e Add a vertex (to build the BFS tree)
* Add an edge (to build the BFS tree)

Graph Interface

e Supports storing a value at each vertex and edge
e Called a label
e Can be any object

e Supports methods for
* get vertex/edge value
e adding/removing vertices/edges
e searching for vertex/edge labels
e changing/querying 'visited' state of vertices/edges

* producing iterators to vertices, neighbors, edges

Graph Interface Methods

void add(V vtx), V remove(V vtx)
* Add/remove vertex to/from graph
void addEdge(V vtx|, V vtx2, E edgelabel),
E removeEdge(V vtxl, V vtx2)
* Add/remove edge between vtx| and vtx2
boolean containskEdge(V vtxl, V vtx2)
e Returns true iff there is an edge between vtx| and vtx2
Edge<V,E> getEdge(V vtxl, V vtx2)
e Returns edge between vtx| and vtx2
void clear()

* Remove all nodes (and edges) from graph

Graph Interface Methods

boolean visit(V vertexLabel)
e Mark vertex as “visited” and return previous value of visited flag
boolean visitEdge(Edge<V,E> e)
e Mark edge as “visited”
boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)
e Returns true iff vertex/edge has been visited
Iterator<V> neighbors(V vtxl)
e Get iterator for all neighbors of vtxl|
* For directed graphs, out-edges only
Iterator<V> iterator()
* Get vertex iterator
void reset()
* Remove visited flags for all nodes/edges

Edge Class : Partial Description

e Graph edges are defined in their own public class
e Edge<V,E>(V vtxl, V vtx2, E label)

e Construct a (possibly directed) edge between the two
vertices having labels vtx| and vtx2

e Useful methods:
label(), here(), there()
label (), setLabel()
visit(), isVisited()

Reachability: Breadth-First Traversal

BIES(G, v) /7 Do a breadth-first search of G starting at v

// pre: all vertices are marked as unvisited
count €< 0:

Create empty queue Q; enqgueue v; mark v as visited; count++
While Q isn t empty
current < ().dequeue();

for each unvisited neighbor u of current :

add u to Q; mark u as vistted: count++
return count:

Reachability: Breadth-First Traversal

BES(G, v) int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new
create empty queue () S A=)
count < 0:; int count = 0;
0 . t d (] ;
enqueue v; mark v as vistted RS e
g.visit(src);
count++ count++;
zwéd%(?éﬂz?eﬂyuy‘ while (!todo.isEmpty()) {
V node = todo.dequeue();
(iﬂ“é'éla%qU€U€Ck Iterator<Vv> neighbors =
Jor each unvisited neighbor u of cur g-neighbors(node);
while (neighbors.hasNext()){
aw&ZUZO(? V next = neighbors.next();

S o if (!g.isVisited(next)) {
todo.enqueue(next);
couni+-= g.visit(next); count++;
relurn count; Porod

return count;

Breadth-First Traversal

int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) {
g.visit(next); count++;
todo.enqueue(next);

}

return count;

Breadth-First Traversal of Edges

int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.1isVisited(next)) {
g.visit(next); count++;
todo.enqueue(next);

}

return count;

Creating a Graph

new

hListUndirected<String,Integer>();

Graph<String, Integer> g
Grap

Ve O O O e O

I N N N N N N N '

' e N S S

g.addEdge
g.addEdge
g.addEdge
g.addEdge
g.addEdge
g.addEdge
g.addEdge

18

Depth-First Search for Graphs

Reachability |l : Depth-First Search

Suppose we replace the queue used in the
Breadth-First Search algorithm with a stack

It turns out that

* We still visit exactly the vertices reachable
from the starting vertex

* The algorithm is equally efficient (Big-O sense)

* The order in which vertices are visited is very
different

20

Reachability Il : Depth-First Search

DIS(G, v) // Do a depth-first search of G starting at v

// pre: all vertices are marked as unvisited
count €< 0:

Create empty stack S; push v; mark v as visited: count++;
While S isn t empty
current <S.pop();
for each unvisited neighbor u of current :

add u 1o S: mark u as visited: count++
return count:

21

Reachability Il : Depth-First Search

[ZESﬂG;U) int DFS(Graph<V,E> g, V src) {
Stack<V> todo = new

create empty stack S Sfackniltv ()

count €< 0 int count = 0;

or todo. h :
push v onto S; mark v as visited odo.push(src)

g.visit(src);

couni++ count++;
ZvﬁdkugéﬁO?CZQDCV while (!todo.isEmpty()) {
V node = todo.pop();
cur 65-[70]7(); Iterator<V> neighbors =
Jor each unvisited neighbor u of cur g-neighbors(node);
while (neighbors.hasNext()){
push uonto S V next = neighbors.next();
P if (!g.isVisited(next)) {
todo.push(next);
couni++ g.visit(next); count++;
reiurn count; Pl

return count;

Reachability Il : Depth-First Search

public static <V,E> int DFS(Graph<V,E> g, V src) {
Stack<V> todo = new StackList<V>(); int count = 0;
g.visit(src); count++;
todo.push(src);
while (!todo.isEmpty()) {
V node = todo.pop();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) {
g.visit(next); count++;
todo.push(next);

}

return count;

DFS Reflections

The DFS algorithm traces out a tree different
from that produced by BFS

* |t still consists of the edges connecting a visited
vertex to (as yet) unvisited neighbors

It is called a DFS tree of G with root v (or from v)

Vertices are processed in (a variant of) pre-
order w.r.t. the tree

By manipulating the stack differently, we could
produce a post-order version of DFS

And perhaps write DFS recursively....

24

DFS : Example
Assuming neighbors are stacked in reverse order

JO%

25

Reachability Il : Recursive DFS

// Before furst call to DFS, set all veruces to unvisited
//Then call DFS(G,v)
DFS(G, v)
Mark v as visited: count = I ;
Jor each unvisited neighbor u of v:
count +=DFES(G,uw);

relurn count;

26

Reachability Il : Recursive DFS

DFES(G, v) public static <V,E> int
DFS(Graph<V,E> g, V src) {

Mark v as vistted g.visit(src);

int count = 1;
count = 1
Iterator<V> neighbors =
g.neighbors(src);
Jor each unvisited neighbor u of v:
while (neighbors.hasNext()) {
V next = neighbors.next();
count +=DFES(G,uw);
if (!g.isVisited(next))
count+= DFS(g, next);
relurn count; }

return count;

}

27

Reachability Il : Recursive DFS

public static <V,E> int DFS(Graph<V,E> g, V src) {
g.visit(src);
int count = 1;
Iterator<V> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) count+= DFS(g, next);
}

return count;

28

Summary & Observations

e Two different methods to traverse a connected
component of a graph

* Breadth-First Search

* Explores short paths from v before long paths
e Depth-First Search
* Explores longest paths possible
e Graph Interface

e Allows writing of Graph algorithms based on local
structure of graph

* Independent of implementation of graph structure

* Coming up: Directed Graphs & Implementations!

