CSCI 136 Data Structures & Advanced Programming

Trees Graph Interface Depth-First Search

Outline

- Recap of Breadth-First Search
- Trees
- The Graph Interface
- Depth-First Search

Reachability and Connectedness

Recall

- A vertex u in G is *reachable* from a vertex v in G if there is a path from v to u
- G is connected if, for every vertex v, every vertex u is reachable from v

Alternate Definition

- G is connected if, for some vertex v, every vertex u of G is reachable from v
 - Exercise: Figure out why this is true!

Testing Connectedness : BFS

Recall

- A simple, queue-driven search (Breadth-First Search) of a graph G, starting at a vertex v, can find all vertices reachable from v
 - See previous presentation
- G is connected if and only if all vertices are reached by the BFS
- BFS can also find shortest paths from v to every other vertex
- These paths form a tree

BFS Reflections : Example

Assuming neighbors are visited alphabetically

Trees

Def'n: A graph G=(V,E) is a *tree* if

- G is connected
- G contains no cycles

Note

- Not the same concept as the tree data structure
 - There is no root
 - There is no hierarchical relationship

Trees : Equivalent Definitions

Try these at home

- G = (V, E) is a tree if and only if
 - G is connected
 - For every edge e in E, removing E disconnects G
- G = (V, E) is a tree if and only if
 - G is connected
 - G has exactly one more vertex than edge : |E| = |V| I
- G = (V, E) is a tree if and only if
 - For every two vertices u, v in V, there is exactly one path between u and v

Implementation with Graph Interface

What are the basic operations we need to describe the BFS method?

- Get a list of the vertices *adjacent* to v
- Mark a vertex as visited
- Add a vertex (to build the BFS tree)
- Add an edge (to build the BFS tree)

Graph Interface

- Supports storing a value at each vertex and edge
 - Called a *label*
 - Can be any object
- Supports methods for
 - get vertex/edge value
 - adding/removing vertices/edges
 - searching for vertex/edge labels
 - changing/querying 'visited' state of vertices/edges
 - producing iterators to vertices, neighbors, edges

Graph Interface Methods

- void add(V vtx), V remove(V vtx)
 - Add/remove vertex to/from graph
- void addEdge(V vtx I, V vtx2, E edgeLabel), E removeEdge(V vtx I, V vtx2)
 - Add/remove edge between vtx1 and vtx2
- boolean containsEdge(V vtx1, V vtx2)
 - Returns true iff there is an edge between vtx1 and vtx2
- Edge<V,E> getEdge(V vtx1, V vtx2)
 - Returns edge between vtx1 and vtx2
- void clear()
 - Remove all nodes (and edges) from graph

Graph Interface Methods

- boolean visit(V vertexLabel)
 - Mark vertex as "visited" and return previous value of visited flag
- boolean visitEdge(Edge<V,E> e)
 - Mark edge as "visited"
- boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)
 - Returns true iff vertex/edge has been visited
- Iterator<V> neighbors(V vtx I)
 - Get iterator for all neighbors of vtx l
 - For directed graphs, out-edges only
- Iterator<V> iterator()
 - Get vertex iterator
- void reset()
 - Remove visited flags for all nodes/edges

Edge Class : Partial Description

- Graph edges are defined in their own public class
 - Edge<V,E>(V vtx1, V vtx2, E label)
 - Construct a (possibly directed) edge between the two vertices having labels vtx1 and vtx2
- Useful methods:

```
label(), here(), there()
label(), setLabel()
visit(), isVisited()
```

Reachability: Breadth-First Traversal

BFS(G, v) // Do a breadth-first search of G starting at v // pre: all vertices are marked as unvisited count $\leftarrow 0$; *Create empty queue Q; enqueue v; mark v as visited; count++* While Q isn't empty $current \leftarrow Q.dequeue();$ for each unvisited neighbor u of current: add u to Q; mark u as visited; count++

return count;

Reachability: Breadth-First Traversal

BFS(G, v)create empty queue Qcount $\leftarrow 0$; enqueue v; mark v as visited count++while Q isn't empty $cur \leftarrow Q.dequeue();$ for each unvisited neighbor u of cur add u to Q mark u as visited count++*return count;*

int BFS(Graph<V,E> g, V src) { Queue<V> todo = new QueueList<V>(); int count = 0;todo.enqueue(src); g.visit(src); count++; while (!todo.isEmpty()) { V node = todo.dequeue(); Iterator<V> neighbors = g.neighbors(node); while (neighbors.hasNext()){ V next = neighbors.next(); if (!g.isVisited(next)) { todo.enqueue(next); g.visit(next); count++; return count; }

Breadth-First Traversal

```
int BFS(Graph<V,E> g, V src) {
  Queue<V> todo = new QueueList<V>(); int count = 0;
  g.visit(src); count++;
  todo.enqueue(src);
 while (!todo.isEmpty()) {
   V node = todo.dequeue();
    Iterator<V> neighbors = g.neighbors(node);
   while (neighbors.hasNext()) {
      V next = neighbors.next();
       if (!g.isVisited(next)) {
          g.visit(next); count++;
         todo.enqueue(next);
       }
    }
  }
  return count;
```

}

Breadth-First Traversal of Edges

```
int BFS(Graph<V,E> g, V src) {
 Queue<V> todo = new QueueList<V>(); int count = 0;
 g.visit(src); count++;
 todo.enqueue(src);
 while (!todo.isEmpty()) {
   V node = todo.dequeue();
    Iterator<V> neighbors = g.neighbors(node);
   while (neighbors.hasNext()) {
      V next = neighbors.next();
      if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
      if (!g.isVisited(next)) {
          q.visit(next); count++;
         todo.enqueue(next);
       }
    }
  }
 return count;
}
```

Creating a Graph

```
Graph<String,Integer> g = new
GraphListUndirected<String,Integer>();
```

```
g.add("A");
g.add("B");
g.add("C");
g.add("D");
g.add("E");
```

```
g.addEdge("A", "B", 1);
g.addEdge("A", "C", 1);
g.addEdge("B", "C", 1);
g.addEdge("C", "D", 1);
g.addEdge("D", "B", 1);
g.addEdge("D", "E", 1);
g.addEdge("E", "A", 1);
```


Depth-First Search for Graphs

Suppose we replace the queue used in the Breadth-First Search algorithm with a stack

It turns out that

- We still visit exactly the vertices reachable from the starting vertex
- The algorithm is equally efficient (Big-O sense)
- The order in which vertices are visited is very different

DFS(G, v) // Do a depth-first search of G starting at v // pre: all vertices are marked as unvisited count $\leftarrow 0$;

Create empty stack S; push v; mark v as visited; count++; While S isn't empty

current \leftarrow *S.pop();*

for each unvisited neighbor u of current :

add u to S; mark u as visited; count++

return count;

}

DFS(G, v)create empty stack S count $\leftarrow 0$; push v onto S; mark v as visited count++while S isn't empty $cur \leftarrow S.pop();$ for each unvisited neighbor u of cur push u onto S mark u as visited count++*return count;*

int DFS(Graph<V,E> g, V src) { Stack<V> todo = new StackList<V>(); int count = 0;todo.push(src); g.visit(src); count++; while (!todo.isEmpty()) { V node = todo.pop(); Iterator<V> neighbors = g.neighbors(node); while (neighbors.hasNext()) { V next = neighbors.next(); if (!g.isVisited(next)) { todo.push(next); g.visit(next); count++; return count;

```
public static <V,E> int DFS(Graph<V,E> g, V src) {
   Stack<V> todo = new StackList<V>(); int count = 0;
   g.visit(src); count++;
   todo.push(src);
   while (!todo.isEmpty()) {
     V node = todo.pop();
     Iterator<V> neighbors = g.neighbors(node);
     while (neighbors.hasNext()) {
       V next = neighbors.next();
       if (!g.isVisited(next)) {
         g.visit(next); count++;
         todo.push(next);
       }
     }
   }
   return count;
```

}

DFS Reflections

- The DFS algorithm traces out a tree different from that produced by BFS
 - It still consists of the edges connecting a visited vertex to (as yet) unvisited neighbors
- It is called a DFS tree of G with root v (or from v)
- Vertices are processed in (a variant of) preorder w.r.t. the tree
- By manipulating the stack differently, we could produce a post-order version of DFS
- And perhaps write DFS recursively....

DFS : Example

Assuming neighbors are stacked in reverse order

Reachability III : Recursive DFS

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count = 1; for each unvisited neighbor u of v: count += DFS(G,u);

return count;

Reachability III : Recursive DFS

DFS(G, v)

Mark v as visited

count = *1*;

for each unvisited neighbor u of v:

count += DFS(G,u);

return count;

public static <V,E> int DFS(Graph<V,E> g, V src) {

g.visit(src);

int count = 1;

Iterator<V> neighbors =
 g.neighbors(src);

while (neighbors.hasNext()) {
 V next = neighbors.next();

```
if (!g.isVisited(next))
  count+= DFS(g, next);
}
```

```
return count;
```

}

Reachability III : Recursive DFS

```
public static <V,E> int DFS(Graph<V,E> g, V src) {
  g.visit(src);
  int count = 1;
  Iterator<V> neighbors = g.neighbors(src);
  while (neighbors.hasNext()) {
    V next = neighbors.next();
    if (!g.isVisited(next)) count+= DFS(g, next);
    }
    return count;
}
```

Summary & Observations

- Two different methods to traverse a connected component of a graph
 - Breadth-First Search
 - Explores short paths from v before long paths
 - Depth-First Search
 - Explores longest paths possible
- Graph Interface
 - Allows writing of Graph algorithms based on local structure of graph
 - Independent of implementation of graph structure
- Coming up: Directed Graphs & Implementations! 29