CSCI 136
Data Structures &
Advanced Programming

Traversing Trees using lterators

Designing Tree lterators

e Goal: design iterators to dispense items in the
same order that the different tree traversal
algorithms visit nodes.

* Methods provided by BinaryTree class:
* preorderIterator ()
e 1inorderIterator()
* postorderIterator()
e levelorderIterator()

Implementing the lterators

* |terators should dispense values in same order
as corresponding the traversal method

e Challenge: We must phrase algorithm steps in
terms of next () and hasNext ()

e Recursive methods don’t convert as easily, so,
let’s start with the most “straightforward”

traversal order: level-order!

Level-Order lterator

e Should return elements in same order as
processed by level-order traversal method

* Visit all nodes at depth i before visiting any node at
depth i+/
e Must phrase in terms of next () and
hasNext ()

* Basic Idea: We “capture” our traversal in a queue

* The queue holds “to be visited”” nodes

Level-Order lterator

public BTLevelorderIterator(BinaryTree<E> root) {
todo = new Queuelist<BinaryTree<E>>();
this.root = root; // needed for reset
reset();

}

public void reset() {
todo.clear();

// empty queue, add root
1f (!root.isEmpty()) todo.enqueue(root);

public

¥

public

Level-Order lterator

boolean hasNext() {
return !'todo.isEmpty(Q);

E next() {

BinaryTree<E> current = todo.dequeue();

E result = current.value();

i1f (lcurrent.left().isEmpty())
todo.enqueue(current.left());

i1f (lcurrent.right().isEmpty())
todo.enqueue(current.right());

return result;

Pre-Order lterator

* Should return elements in same order as
processed by pre-order traversal method:

* Visit node, then left subtree, then right subtree

e Must phrase in terms of next () and
hasNext ()

e Basic idea: We “simulate recursion’ with stack

e The stack holds “partially processed” nodes

Pre-Order lterator

* Order: node -> left subtree -> right subtree

|. Constructor: Push root onto TODO stack

2. On call to next():

* Pop node from TODO stack

e Push right and then left nodes of popped node onto
TODO stack

 Return popped node’s value

3. On call to hasNext ():
e return !stack.isEmpty()

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Blue Violet

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

_/\
(_Blue Violet) Blue

/\ Violet

Orange Yellow

/\ todo stack

Indigo Red

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Bl
/\ Violet

Orange Yellow

/\ todo stack

Indigo Red

GB

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet Orange

T Yellow

Orange Yellow
/\ todo stack

Indigo Red

GBV

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

T T Indigo
Blue Violet Red

Yellow

todo stack

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

Blue Violet Red

Yellow

todo stack

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

T Yellow
Orange

/\ todo stack

Indigo Red

GBVOIR

Pre-Order lterator

Visit node, then each node in left subtree, then
each node in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

/\ todo stack

Indigo Red

GBVOIRY

Pre-Order lterator

public BTPreorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

public void reset() {
todo.clear();

// stack 1s now empty; push root on TODO stack
if ((lroot.isEmpty())
todo.push(root);

Pre-Order lterator

public boolean hasNext() {
return !todo.isEmpty();

¥

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();

if (lold.right().isEmpty())
todo.push(old.right());

1f (lold.left().1sEmpty())
todo.push(old.left());

return result;

Tree Traversal Practice Problems

* Prove that 1levelOrder () is correct: that

is, that it touches the nodes of the tree in the
correct order (Hint: induction by level)

* Prove that 1evelOrder () takes O(n) time,
where n is the size of the tree

* Prove that the PreOrder (or LevelOrder)
Iterator visits the nodes in the same order as
the PreOrder (or LevelOrder) traversal
method

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

reen

Blue Violet Blue

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

/\

Blue Violet

/\ Green

Orange Yellow

/\ todo stack

Indigo Red

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

Indigo

Orange

Violet

todo stack

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green
Blue Orange
Violet
Orange)\ Yellow
/\ todo stack

Indigo Red

BGI

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

Red
Violet

todo stack

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green
/\

Blue
T Violet

Orange Yellow

/\ todo stack

Indigo Red

BGIOR

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

TN Yellow

Orange
/< todo stack

Indigo Red

BGIORYV

In-Order lterator

Each node is visited after all nodes in left subtree
are visited and before any nodes in right subtree.

Green

/\

Blue Violet

S

Orange Yellow

/\ todo stack

Indigo Red

BGIORVY

In-Order lterator

e Should return elements in same order as
processed by in-order traversal method:

* Traverse left subtree, then node, then right subtree

e Must phrase in terms of next () and
hasNext ()

* Basic idea: We again “simulate recursion” with
stack

In-Order lterator

e Qutline: left -> node -> right
|. Push left children (as far as possible) onto stack

2. 0n call to next ():

e Pop node from stack
 Push right child and follow left children as far as possible

e Return node’s value

3. On call to hasNext ():
e return !stack.isEmpty()

In-Order lterator

public BTInorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();

public void reset() {
todo.clear();
// stack i1s empty. Push on nodes from root along
// longest “left-only” path
BinaryTree<E> current = root;
while (!current.isEmpty()) {
todo.push(current);
current = current.left();

In-Order lterator

public E next() {
BinaryTree<E> old = todo.pop();
E result = old.value();
// we know this node has no unvisited left children;
// 1f this node has a right child,
// we push right child and longest “left-only” path
// else
// top element of stack 1s next node to be visited
if (lold.right().isEmpty()) {
BinaryTree<E> current = old.right();
do {
todo.push(current);
current = current.left(Q);
} while (!current.isEmpty());
¥

return result;

Post-Order lterator

e Qutline: left -> right -> node
|. Push path to leftmost leaf onto stack
2. 0n call to next ():

e Pop node from stack

e Determine whether it was the left or right node of its parent

— If left child, push parent’s right child and the entire path to leftmost leaf
parent’s right subtree

e Return node’s value

3.0On call to hasNext ():
e return !stack.isEmpty()

Post-Order lterator

public BTPostorderIterator(BinaryTree<E> root) {
todo = new StackList<BinaryTree<E>>();
this.root = root;
reset();
ks
public void reset() {
todo.clear();
BinaryTree<E> current = root;
while (!current.isEmpty()) {
todo.push(current); // current now ‘below’ children
1f (current.left().i1sEmpty())
current = current.left();
else
current = current.right(Q);
¥ // Top of stack 1s now left-most unvisited leaf

Post-Order lterator

public E next() {
BinaryTree<E> current = todo.pop();
E result = current.value();
if ('todo.isEmpty()) {
BinaryTree<E> parent = todo.get();
if Ccurrent == parent.left()) {
current = parent.right(Q);
while ('current.isEmpty()) {
todo.push(current);
if (lcurrent.left().isEmpty())
current = current.left(Q);
else current = current.right(Q);

¥
¥

return result;

Tree Traversals

In summary:
* |n-order: “left, node, right”

* Pre-order: “node, left, right” — Stack

e Post-order: “left, right, node”

—_—

* Level-order: visit all nodes at depth i before } Queue
depth i+|

Traversals & Searching

* We can use traversals for searching trees

* How might we search a tree for a value!

e Breadth-First: Explore nodes near the root before
nodes far away (level-order traversal)
e Depth-First: Search until leaves are reached

* (post-order traversal; but halt when solution found)

* Which is better?

e Depends on the situation!

* Does the tree structure represent a concept, e.g.,
distance or relationship between items?

e Is the tree “sparse” or “dense’?

Final Thoughts

* |terators continue to provide a useful service:
common structure to enumerate the contents

of a data structures

* We have defined four iterators that let us
traverse the nodes of a tree in a variety of
principled ways

* The best iterator for the task at hand will
depend on our problem and our goals. So
think critically!

