CSCI 136
Data Structures &
Advanced Programming

Shortest Paths in Unweighted Graphs
(BFS)

Finding Shortest Paths (Edge Count)

Recall: Distance from u to v in an undirected graph
G is the number of edges in (any) minimum length
path between u and v

Goal: Find distance between every pair of vertices

Assumption: G is connected
ldea: For each vertex v in G, build a BFS tree from v

* This tree will contain, for each u # v, a shortest path
fromvtou

The BFS Tree of Shortest Paths From A

For each vertex u#A, store (u, parent(u))
How: Use a Map<V,V> : The Routing Table for A

Storing The Path Information

Given a BFS tree some vertex v

* For each vertex u # v, store the pair (u, parent(u))

* From these pairs we can build the path from v to u

* By starting with u and working backwards

e Store the pairs in a Map<V,V> : the routingTable for v
e Store the Routing Tables in a Map<V, Map<V,V>>!

e Entries are (v, routingTable(v))
* To find path from v to u
* Get routing table for v from Routing Tables Map

* Look up u in the routing table for v

e Follow parents back from u to v

Finding Shortest Paths (Edge Count)

BuildRouting1ables(G) : Map of routing 1ables
Create an empty Map routingables of Maps
Jor each vertex v in G
build routing table for v
add the routing table for v to routing ables

GetShortestPath(RoutingTables, v, u) : List of vertices on path
routing1able= routing table of v from Routing1ables

ifuisntin the routing table for v return null - /7 u and v in different components!
let path be an empty list
add u to path
while(u = v)
u = routinglable.get() /7 ubecomes u's parent
add u to beginning of path

return path

Building a Routing Table

Map BuildRouting1able(G, v) // Using BES of G starting at v
Create empty map routingable to hold BES tree from v
Create empty queue Q; enqueue v; mark v as visited:
Add (v,v) to routingTable /7 v will have itself as predecessor
While Q isn t empty
current < ().dequeue()
Jor each unuvisited neighbor u of current
add (u,current) to routing1able
add u to Q; mark u as visited

return routing1 able;

public static <V,E> Map<V,V>
Map singleSourcePaths(G, v) SSSP(Graph<V,E> g, V src) {
Map<V,V> routingTable =

Create empty map routing1able
new Hashtable<V,V>();

(}Ba&nﬂmDO/QUGU€(% Queue<V> todo = new QueueList<V>();
engueue v todo.enqueue(src);
mark v as visited- o TASE() £
. routingTable.put(src,src);
Add (v,v) to routing1able while (!todo.isEmpty()) {
IV%&%(?Aﬂz?enquy' V node = todo.dequeue();
(10”€-Q)a%qaea66) AbstractIterator<V> neighbors =
o (AbstractIterator<v>)
Jor each unvisited g.neighbors (node);
while (neighbors.hasNext()) {

neighbor u of cur

A oy V next = neighbors.next();
add (u,cur) to routingTable if (!g.isVisited(next)) {
am&ZUZO(? routingTable.put (next,node);

mark u as vistted todo.enqueue (next);

g.visit(next);

return routing1 able; 1)

return routingTable;}

public static <V,E> Map<V,V> SSSP(Graph<V,E> g, V src) {

Map<V,V> routingTable = new Hashtable<V,V>();
Queue<V> todo = new QueueList<V>();
todo.enqueue(src);

g.visit(src);

routingTable.put(src,src);

while (!todo.isEmpty()) {
V node = todo.dequeue();

AbstractIterator<V> neighbors = AbstractIterator<v>)
g.neighbors(node) ;

while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) {
routingTable.put (next,node);
todo.enqueue(next);
g.visit(next);
}}}

return routingTable;}

Finding Shortest Paths: Complexity

Using GraphListUndirected implementation

e singleSourcePaths(G,v) visits exactly those
vertices and edges reachable from v

* |t does not visit any other vertex or edge
* So, finding i*" map M.=(V,E) takes time
O(|Vil*[Eil)
* Worst Case: G is connected: |V.|= |V|, |E]|=|E]
* Run time: O(|V] « ([V] + [E))=O(|V|*+|V][E])
e Could be O(|V]3)

Summary & Observations

Using GraphListUndirected implementation

e Can compute shortest path information for all
pairs of vertices
* In O(|V[?*+|V||E|) time and O(|V|?) space
» Really O(|V|*+|E|) space, but |E| is O(|V|?)
e A path can be computed from the tables in time
proportional to the length of the path
e Assuming O(l) lookup times for Maps

* Up next: Shortest paths using edge weights!

