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PageRank

How does Google decide which pages to return?


Produce two rankings for each page


Relevance ranking


Importance ranking


Use a weighted sum of these



PageRank
Relevance Ranking


Based on content of page


Words, HTML markup, etc


Importance 


Based on structure of the web graph


We’ll discuss the Importance Ranking



PageRank

Compute a measure R(v) for every web page v


R(v) should reflect importance of pages that 
link to v
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Out DegreeC(1) = 3 C(2) = 2

C(3) = 1 C(4) = 2
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1 2

In DegreeIn(1) = 2 In(2) = 1

In(3) = 3 In(4) = 2



PageRank : Parameters

Parameters of web graph G


N & L : Number of vertices & edges in G


C(v) : out-degree of v (number of links from v)


R(v) : the rank of v (to be computed)


Big idea


Google Juice = liquid rank



PageRank : Google Juice

Ranking as (fluid) flow in a network


Each page shares its importance with pages it links to


Page u gives each neighbor R(u)/C(u) of its importance


So Each page gets importance from pages that link to it


If u1, ..., uIn(v) are pages linking to page v


then R(v) = R(u1)/C(u1) + ... + R(uIn(v)))/C(uIn(v))



PageRank : Iterated Rankings

Goal: Find a ranking satisfying 


R(v) = R(u1)/C(u1) + ... + R(uIn(v)))/C(uIn(v))


The Algorithm:


Find an initial ranking: For example, R0(v) = In(v)/L


Let Google Juice flow to give new ranking


R1(v) = R0(u1)/C(u1) + ... + R0(uIn(v)))/C(uIn(v))


Repeat many times to get rankings R2, R3, R4, ...


Stop when Rn is not much different from Rn-1
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Ranking Function
R(1) R(2)

R(3) R(4)



R(1) R(2)

R(3) R(4)

R1(1) = R0(3)/C(3) + R0(4)/C(4)
R1(2) = R0(1)/C(1)
R1(3) = R0(1)/C(1) + R0(2)/C(2) + R0(4)/C(4)
R1(4) = R0(1)/C(1) + R0(2)/C(2)

R1(1) = R0(3) + R0(4)/2
R1(2) = R0(1)/3
R1(3) = R0(1)/3 + R0(2)/2 + R0(4)/2
R1(4) = R0(1)/3 + R0(2)/2



C(1) = 3 C(2) = 2

C(3) = 1 C(4) = 2

R1(1) = R0(3) + R0(4)/2
R1(2) = R0(1)/3
R1(3) = R0(1)/3 + R0(2)/2 + R0(4)/2
R1(4) = R0(1)/3 + R0(2)/2

R1(1) = R0(3) + R0(4)/2 = 0.375 + .125 = 0.5
R1(2) = R0(1)/3 = 0.08333
R1(3) = R0(1)/3 + R0(2)/2 + R0(4)/2 = 0.08333 + 0.0625 + 0.125 = 0.2708
R1(4) = R0(1)/3 + R0(2)/2 = 0.08333 + 0.0625 = 0.14583

1 2 3 4
R0 0.25 0.125 0.375 0.25



Computing Rank Functions Rn()

1 2 3 4
R0 0.25 0.125 0.375 0.25
R1 0.5 0.0833330.270833 0.145833
R2 0.34375 0.166667 0.28125 0.208333
R3 0.385417 0.114583 0.302083 0.197917
...
R23 0.387097 0.129032 0.290323 0.193548
R24 0.387097 0.129032 0.290323 0.193548



PageRank : Amazing Result

On any reasonably structured graph, this method 
will converge!


Reasonably structured


For every pair of vertices {u,v} there is a 
directed path from u to v and one from v to u.  
[G is strongly connected]


Not all cycle-lengths are multiples of a common 
value k > 1 [G is aperiodic]



R(1) R(2)

R(3) R(4)

R(1) = R(3) + R(4)/2
R(2) = R(1)/3
R(3) = R(1)/3 + R(2)/2 + R(4)/2
R(4) = R(1)/3 + R(2)/2
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Web Graph G

A 1 2 3 4

1 0 0 1 1/2

2 1/3 0 0 0

3 1/3 1/2 0 1/2

4 1/3 1/2 0 0

 Av,u = 1/C(u) if u→v

Av,u = 0 otherwise

u

v

R1(3) = R0(1)/3 + R0(2)/2 + R0(4)/2

R1(3) = R0(1)∗A3,1 + R0(2)∗A3,2 + R0(3)∗A3,3 + R0(4)∗A3,4

1 2 3 4
R0 1/4 1/8 3/8 1/4

Initial Ranking



R(1) R(2)

R(3) R(4)

R(1) = R(3) + R(4)/2
R(2) = R(1)/3
R(3) = R(1)/3 + R(2)/2 + R(4)/2
R(4) = R(1)/3 + R(2)/2

0 0 1 1/2

1/3 0 0 0

1/3 1/2 0 1/2

1/3 1/2 0 0
)(R(1)

R(2)

R(3)

R(4)
( )=

R(1)

R(2)

R(3)

R(4)
( )

X XA= *



0 0 1 1/2

1/3 0 0 0

1/3 1/2 0 1/2

1/3 1/2 0 0
)(R(1)

R(2)

R(3)

R(4)
( )=

R(1)

R(2)

R(3)

R(4)
( )

X XA= *

0-1 0 1 1/2

1/3 0-1 0 0

1/3 1/2 0-1 1/2

1/3 1/2 0 0-1
)(0

0

0

0
( )=

R(1)

R(2)

R(3)

R(4)
( )

0 X(A - I)= *



PageRank as Linear Algebra
Rewrite equations


R(v) = R(u1)/C(u1) + ... + R(uIn(v)))/C(uIn(v))


Vertices : v1, … , vn


Let xi = R(vi) and let X = (x1, … , xn) then


xi = x1 ∙ A[i,1] + x2 ∙ A[i,2] + ∙ ∙ ∙ + xn ∙ A[i,n]  


 So X = A ∙ X, a matrix equation for n × n matrix A


A solution exists when A is invertible



PageRank as Random Walk

Think of R0 as a probability distribution


R0(v) : probability of starting at v (or)


R0(v) : probability of being at v after 0 steps



Random Walks on Graphs
How can we interpret R1?


R1(3) = R0(1)∗A3,1 + R0(2)∗A3,2 + R0(3)∗A3,3 + R0(4)∗A3,4


R0(j)∗Ai,j = R0(j)∗(1/C(j))  (or 0)


Probability we were at j and then moved to i


Assumes equal likelihood of taking any outgoing edge


So R1(3) is the probability that we got to vertex 3 in 1 step!


That is: R1(i) = probability of being at page i after 1 click


Assuming that the starting distribution was R0



Random Walks on Graphs

Similarly, Ri(j) is the probability of being at page j after 
exactly i clicks (given starting distribution R0)


Rename Ri() to be Pri() to emphasize this fact


Let’s try an example!
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Random Surfer

Pri(j) = prob. at page j after i clicks
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Random Surfer

Pri+1(2) = Pri(1)/3
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Random Surfer

Pri+1(1) = ?
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Random Surfer

Pri+1(1) = Pri(3) + Pri(4)/2
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Random Surfer

Pri+1(j) =      Pri(k)/C(k)
k ∈ in(j)
∑
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P0() P1() P2()

1 1/4

2 1/4

3 1/4

4 1/4

Pri+1(2) = Pri(1)/3

Pri+1(1) = Pri(3) + Pri(4)/2

Pri+1(3) = Pri(1)/3 + Pri(2)/2 + Pri(4)/2

Pri+1(4) = Pri(1)/3 + Pri(2)/2
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P0() P1() P2()

1 1/4 3/8

2 1/4

3 1/4

4 1/4

Pri+1(1) = Pri(3) + Pri(4)/2

Pri+1(3) = Pri(1)/3 + Pri(2)/2 + Pri(4)/2

Pri+1(4) = Pri(1)/3 + Pri(2)/2

Pri+1(2) = Pri(1)/3
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P0() P1() P2()

1 1/4 3/8

2 1/4 1/12

3 1/4

4 1/4

Pri+1(1) = Pri(3) + Pri(4)/2

Pri+1(3) = Pri(1)/3 + Pri(2)/2 + Pri(4)/2

Pri+1(4) = Pri(1)/3 + Pri(2)/2

Pri+1(2) = Pri(1)/3
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P0() P1() P2()

1 1/4 3/8

2 1/4 1/12

3 1/4 1/3

4 1/4

Pri+1(1) = Pri(3) + Pri(4)/2

Pri+1(3) = Pri(1)/3 + Pri(2)/2 + Pri(4)/2

Pri+1(4) = Pri(1)/3 + Pri(2)/2

Pri+1(2) = Pri(1)/3
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P0() P1() P2()

1 1/4 3/8

2 1/4 1/12

3 1/4 1/3

4 1/4 5/24

Pri+1(1) = Pri(3) + Pri(4)/2

Pri+1(3) = Pri(1)/3 + Pri(2)/2 + Pri(4)/2

Pri+1(4) = Pri(1)/3 + Pri(2)/2

Pri+1(2) = Pri(1)/3
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P0() P1() P2()

1 1/4 0.38

2 1/4 0.08

3 1/4 0.33

4 1/4 0.21

Pri+1(1) = Pri(3) + Pri(4)/2

Pri+1(3) = Pri(1)/3 + Pri(2)/2 + Pri(4)/2

Pri+1(4) = Pri(1)/3 + Pri(2)/2

Pri+1(2) = Pri(1)/3
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P0() P1() P2()

1 1/4 0.38 0.44

2 1/4 0.08 0.54

3 1/4 0.33 0.27

4 1/4 0.21 0.17

Pri+1(1) = Pri(3) + Pri(4)/2

Pri+1(3) = Pri(1)/3 + Pri(2)/2 + Pri(4)/2

Pri+1(4) = Pri(1)/3 + Pri(2)/2

Pri+1(2) = Pri(1)/3



P0() P1() P2() P3() P4() P5() P6() P7()

1 0.25 0.38 0.44 0.35 0.40 0.39 0.38 0.39

2 0.25 0.08 0.13 0.15 0.12 0.13 0.13 0.13

3 0.25 0.33 0.27 0.29 0.30 0.29 0.29 0.29

4 0.25 0.21 0.17 0.21 0.19 0.19 0.20 0.19



What is Happening?

The distributions Pri() converge to a probability 
distribution Pr∞()


And it’s the same regardless of starting 
distribution Pr0!


Pr∞() depends only on the structure of graph G


How can we think about Pr∞()?



Understanding Pr∞()

Pr∞(v) is the probability of eventually being at vertex v after 
some very long random walk through the web graph, 
starting from a randomly selected vertex


Pr∞(v) = Σu Pr∞(u)/C(u) summing over all u→v


Pr∞() is called an equilibrium distribution for G


If G is “properly structured”, Pr∞() exists and is unique!



Perron-Frobenius* Theorem
Let G be a strongly connected and aperiodic** directed graph 
and let Av,u be the probability of moving from vertex u to vertex 
v.  Then there is a probability distribution Pr∞ such that

Pr∞(v) = Σu Pr∞(u)∗Av,u, summing over all u→v


Pr∞ is the limit of Pr0, Pr1, Pr2, Pr3, ... : As n→∞, Prn→Pr∞

Pr∞ is called the equilibrium distribution and it’s unique given A

The fine print:

*This theorem describes a property of matrices.  Av,u satisfies the hypotheses of the 
theorem and so Av,u has the property, which implies the existence of Pr∞.

**G is k-periodic if the length of every cycle in G is a multiple of k > 1.  If there is no 
such k, G is aperiodic.  We can assume that the web graph is aperiodic.



What Could Go Wrong?

The web graph is not strongly connected


There are pages with no links (sink)


There are groups of pages with no links 
leaving the group (connected component)
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P0() P1() P2()

1 1/4 0.38 0.44

2 1/4 0.08 0.13

3 1/4 0.33 0.27

4 1/4 0.21 0.17

Pri+1(1) = Pri(3) + Pri(4)/2

Pri+1(3) = Pri(1)/3 + Pri(2)/2 + Pri(4)/2

Pri+1(4) = Pri(1)/3 + Pri(2)/2

Pri+1(2) = Pri(1)/3
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P0() P1() P2()

1 1/4 0.38 0.25 0.23

2 1/4 0.33 0.46 0.54

3 1/4 0.21 0.17 0.15

4 1/4 0.08 0.13 0.08

Pri+1(1) = Pri(3) + Pri(4)/2

Pri+1(3) = Pri(1)/3 + Pri(4)/2

Pri+1(4) = Pri(1)/3

Pri+1(2) = Pri(2) + Pri(1)/3 Attention!



Avoiding Traps

The web graph is not strongly connected


There are pages with no links (sink)


There are groups of pages with no links 
leaving the group (connected component)


What can we do?



Avoiding Traps

Adjust probabilities to allow for random page 
jumping


Let E(v) be a probability distribution


Idea: E(v) = probability that user randomly 
jumped to page v from some other page

Random Walks : Jump!



Pri+1(v) = Σu Pri(u)/C(u) (for u→v) becomes


Pri+1(v) = 𝛿 E(v) + (1-𝛿) Σu Pri(u)/C(u) (for u→v)


Why 𝛿? : Ensure Pri+1(v) forms a probability distribution 
(choose 𝛿 << 1)


Same as replacing Av,u with 𝛿 ∙ E(v) + (1 - 𝛿 ) ∙ Av,u


Frobenius Theorem still holds : Pr∞() exists

Avoiding Traps
Random Walks : Jump!



Essentially, we’ve added all missing edges to the web 
graph, but given these new edges tiny probabilities


Probabilities of existing edges are also tweaked to 
ensure that we still have a probability distribution


Now graph is strongly connected and aperiodic 
(because it’s complete)


The starting transition probabilities (matrix A) 
determine the equilibrium probabilities


Avoiding Traps
Random Walks : Jump!



Summary & Observations

PageRank uses a combination of relevance and 
importance ranks


Relevance based on page (vertex) contents


Importance based on link structure (edges)


Importance can be viewed as a probability 
distribution on the vertices (pages)


