PageRank

PageRank

How does Google decide which pages to return?
Produce two rankings for each page
Relevance ranking
Importance ranking
Use a weighted sum of these

PageRank

Relevance Ranking

- Based on content of page
- Words, HTML markup, etc

Importance

- Based on structure of the web graph

We'll discuss the Importance Ranking

PageRank

Compute a measure $R(v)$ for every web page v

- $R(v)$ should reflect importance of pages that link to v

Welcome to Page 2

You can read all about:

- Page 3
- Page 4

Welcome to Page 3

You can read all about:

- Page 1

Welcome to Page 4
You can read all about:

- Page 1
- Page 3

$C(1)=3$
 Out Degree
 $C(2)=2$

PageRank : Parameters

- Parameters of web graph G
- N \& L: Number of vertices \& edges in G
- $C(v)$: out-degree of v (number of links from v)
- $R(v)$: the rank of v (to be computed)
- Big idea
- Google Juice = liquid rank

PageRank : Google Juice

- Ranking as (fluid) flow in a network
- Each page shares its importance with pages it links to
- Page u gives each neighbor $R(u) / C(u)$ of its importance
- So Each page gets importance from pages that link to it
- If $u_{1}, \ldots, u_{\text {In }(v)}$ are pages linking to page v
- then $\left.R(v)=R\left(u_{1}\right) / C\left(u_{1}\right)+\ldots+R\left(u_{\operatorname{In}(v)}\right)\right) / C\left(u_{\operatorname{In}(v)}\right)$

PageRank : Iterated Rankings

Goal: Find a ranking satisfying

$$
\left.R(v)=R\left(u_{1}\right) / C\left(u_{1}\right)+\ldots+R\left(u_{\operatorname{In}(v)}\right)\right) / C\left(u_{\operatorname{In}(v)}\right)
$$

The Algorithm:

- Find an initial ranking: For example, $R_{0}(v)=\operatorname{In}(v) / L$
- Let Google Juice flow to give new ranking

$$
\text { - } \left.\mathrm{R}_{1}(v)=\mathrm{R}_{0}\left(u_{1}\right) / C\left(u_{1}\right)+\ldots+\mathrm{R}_{0}\left(u_{\operatorname{In}(v)}\right)\right) / C\left(u_{\operatorname{In}(v)}\right)
$$

- Repeat many times to get rankings $R_{2}, R_{3}, R_{4}, \ldots$
- Stop when R_{n} is not much different from R_{n-1}

Ranking Function


```
C ( 1 ) = 3 \quad C ( 2 ) = 2
```


	1	2	3	4
R_{0}	0.25	0.125	0.375	0.25

(2) $\mathrm{R}_{1}(1)=\mathrm{R}_{0}(3)+\mathrm{R}_{0}(4) / 2=0.375+.125=0.5$
(- $R_{1}(2)=R_{0}(1) / 3=0.08333$

- $\mathrm{R}_{1}(3)=\mathrm{Ro}_{0}(1) / 3+\mathrm{R}_{0}(2) / 2+\mathrm{R}_{0}(4) / 2=0.08333+0.0625+0.125=0.2708$
(- $\mathrm{R}_{1}(4)=\mathrm{R}_{0}(1) / 3+\mathrm{R}_{0}(2) / 2=0.08333+0.0625=0.14583$

Computing Rank Functions $\mathrm{R}_{\mathrm{n}}()$

	1	2	3	4
R_{0}	0.25	0.125	0.375	0.25
R_{1}	0.5	0.083333	0.270833	0.145833
R_{2}	0.34375	0.166667	0.28125	0.208333
R_{3}	0.385417	0.114583	0.302083	0.197917
\ldots				
R_{23}	0.387097	0.129032	0.290323	0.193548
R_{24}	0.387097	0.129032	0.290323	0.193548

PageRank : Amazing Result

- On any reasonably structured graph, this method will converge!
- Reasonably structured
- For every pair of vertices $\{u, v\}$ there is a directed path from u to v and one from v to u. [G is strongly connected]
- Not all cycle-lengths are multiples of a common value $K>1$ [G is aperiodic]

$$
\begin{aligned}
& R(1)=R(3)+R(4) / 2 \\
& R(2)=R(1) / 3 \\
& R(3)=R(1) / 3+R(2) / 2+R(4) / 2 \\
& R(4)=R(1) / 3+R(2) / 2
\end{aligned}
$$

	1	2	3	4
R_{0}	$1 / 4$	$1 / 8$	$3 / 8$	$1 / 4$

Initial Ranking

U					
A	1	2	3	4	
1	0	0	1	$1 / 2$	
2	$1 / 3$	0	0	0	
\mathbf{V}	$1 / 3$	$1 / 2$	0	$1 / 2$	
4	$1 / 3$	$1 / 2$	0	0	

$A_{v, u}=1 / C(u)$ if $u \rightarrow v$
$A_{v, u}=0$ otherwise

$$
\begin{gathered}
R_{1}(3)=R_{0}(1) / 3+R_{0}(2) / 2+R_{0}(4) / 2 \\
R_{1}(3)=R_{0}(1) * A_{3,1}+R_{0}(2) * A_{3,2}+R_{0}(3) * A_{3,3}+R_{0}(4) * A_{3,4}
\end{gathered}
$$

PageRank as Linear Algebra

Rewrite equations

$$
\left.R(v)=R\left(u_{1}\right) / C\left(u_{1}\right)+\ldots+R\left(u_{\operatorname{In}(v)}\right)\right) / C\left(u_{\operatorname{In}(v)}\right)
$$

Vertices : $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$
Let $x_{i}=R\left(v_{i}\right)$ and let $x=\left(x_{1}, \ldots, x_{n}\right)$ then

$$
x_{i}=x_{1} \cdot A[i, 1]+x_{2} \cdot A[i, 2]+\cdots+x_{n} \cdot A[i, n]
$$

So $X=A \cdot X$, a matrix equation for $n \times n$ matrix A

A solution exists when A is invertible

PageRank as Random Walk

- Think of Ro as a probability distribution
- Ro(v) : probability of starting at v (or)
- Ro(v) : probability of being at v after 0 steps

Random Walks on Graphs

- How can we interpret R_{1} ?
- $R_{1}(3)=R_{0}(1) * A_{3,1}+R_{0}(2) * A_{3,2}+R_{0}(3) * A_{3,3}+R_{0}(4) * A_{3,4}$
- $R_{0}(j) * A_{i, j}=R_{0}(j) *(1 / C(j))$ (or 0$)$
- Probability we were at j and then moved to i
- Assumes equal likelihood of taking any outgoing edge
- So $R_{1}(3)$ is the probability that we got to vertex 3 in 1 step!
- That is: $R_{1}(i)=$ probability of being at page i after 1 click
- Assuming that the starting distribution was R_{0}

Random Walks on Graphs

- Similarly, $R_{i}(j)$ is the probability of being at page j after exactly i clicks (given starting distribution R_{0})
- Rename $R_{i}()$ to be $\operatorname{Pr}_{i}()$ to emphasize this fact
- Let's try an example!

Random Surfer

$\operatorname{Pr}(\mathrm{j})=$ prob. at page j after i clicks

Random Surfer

Random Surfer

Random Surfer

Random Surfer

	$P_{0}()$	$P_{1}()$	$P_{2}()$	$P_{3}()$	$P_{4}()$	$P_{5}()$	$P_{6}()$	$P_{7}()$
1	0.25	0.38	0.44	0.35	0.40	0.39	0.38	0.39
2	0.25	0.08	0.13	0.15	0.12	0.13	0.13	0.13
3	0.25	0.33	0.27	0.29	0.30	0.29	0.29	0.29
4	0.25	0.21	0.17	0.21	0.19	0.19	0.20	0.19

What is Happening?

- The distributions Pri() converge to a probability distribution Pros () $^{\text {(}}$
- And it's the same regardless of starting distribution Pro!
- $P_{r_{\infty}}()$ depends only on the structure of graph G
- How can we think about $\operatorname{Pr}_{\infty}()$?

Understanding Pros()

- $\operatorname{Pr}_{\infty}(v)$ is the probability of eventually being at vertex v after some very long random walk through the web graph, starting from a randomly selected vertex
- $\operatorname{Pr}_{\infty}(v)=\Sigma_{u} \operatorname{Pr}_{\infty}(u) / C(u)$ summing over all $u \rightarrow v$
- $\operatorname{Pr}_{\infty}()$ is called an equilibrium distribution for G
- If G is "properly structured", $\operatorname{Pr}_{\infty}()$ exists and is unique!

Perron-Frobenius* Theorem

Let G be a strongly connected and aperiodic** directed graph and let $A_{v, u}$ be the probability of moving from vertex u to vertex v. Then there is a probability distribution $\operatorname{Pr}_{\infty}$ such that

- $\operatorname{Pr}_{\infty}(v)=\Sigma_{u} \operatorname{Pr}_{\infty}(u) * A_{v, u}$ summing over all $u \rightarrow v$
- $\operatorname{Pr}_{\infty}$ is the limit of $\operatorname{Pr}_{0}, \operatorname{Pr}_{1}, \operatorname{Pr}_{2}, \operatorname{Pr}_{3}, \ldots: A s n \rightarrow \infty, \operatorname{Pr}_{n} \rightarrow \operatorname{Pr}_{\infty}$
$P r_{\infty}$ is called the equilibrium distribution and it's unique given A

The fine print:
*This theorem describes a property of matrices. A $\mathrm{A}_{\mathrm{v}, \mathrm{u}}$ satisfies the hypotheses of the theorem and so $A_{v, u}$ has the property, which implies the existence of $\operatorname{Pr}_{\infty}$.
${ }^{* *} G$ is k-periodic if the length of every cycle in G is a multiple of $k>1$. If there is no such k, G is aperiodic. We can assume that the web graph is aperiodic.

What Could Go Wrong?

- The web graph is not strongly connected
- There are pages with no links (sink)
- There are groups of pages with no links leaving the group (connected component)

Avoiding Traps

- The web graph is not strongly connected
- There are pages with no links (sink)
- There are groups of pages with no links leaving the group (connected component)
- What can we do?

Avoiding Traps

Random Walks : Jump!

- Adjust probabilities to allow for random page jumping
- Let $E(v)$ be a probability distribution
- Idea: $E(v)=$ probability that user randomly jumped to page v from some other page

Avoiding Traps

Random Walks : Jump!

- $\operatorname{Pr}_{i+1}(v)=\Sigma_{u} \operatorname{Pr}(u) / C(u)($ for $u \rightarrow v)$ becomes
- $\operatorname{Pr}_{i+1}(v)=\delta E(v)+(1-\delta) \Sigma_{u} \operatorname{Pr}(u) / C(u)($ for $u \rightarrow v)$
- Why δ ? : Ensure $\operatorname{Pr}_{i+1}(v)$ forms a probability distribution (choose $\delta \ll 1$)
- Same as replacing $\mathrm{A}_{\mathrm{v}, \mathrm{u}}$ with $\delta \cdot \mathrm{E}(\mathrm{v})+(1-\delta) \cdot \mathrm{A}_{v, u}$
- Frobenius Theorem still holds : $\operatorname{Pr}_{\infty}()$ exists

Avoiding Traps

Random Walks : Jump!

- Essentially, we've added all missing edges to the web graph, but given these new edges tiny probabilities
- Probabilities of existing edges are also tweaked to ensure that we still have a probability distribution
- Now graph is strongly connected and aperiodic (because it's complete)
- The starting transition probabilities (matrix A) determine the equilibrium probabilities

Summary \& Observations

- PageRank uses a combination of relevance and importance ranks
- Relevance based on page (vertex) contents
- Importance based on link structure (edges)
- Importance can be viewed as a probability distribution on the vertices (pages)

