
CSCI 136
Data Structures &

Advanced Programming

Williams College
Fall 2020

Instructors: The Bills (J & L)

Today’s Outline

• Why is 136 taught in Java?

• Object Oriented Programming (OOP)!
• OOP as a (powerful) way to organize your code
• Discuss select Java features that support OOP

• Classes & Objects

• Access Modifiers
• Interfaces
• static (variables and functions)

2

3

WHY JAVA?

4

Java is a compiled language

• Java code is sent to a compiler that statically
verifies the code follows the language’s rules
$ javac HelloWorld.java
$ ls
HelloWorld.java
HelloWorld.class

• The resulting .class file can then be run by
the Java Virtual Machine (JVM)
$ java HelloWorld
Hello World!

• Question: Why is this good? 5

Java is a compiled language

• Why is this good? (many reasons…)

• We can detect certain errors before they happen
• Can then ask the compiler for more information

(or to run again with different settings)

• Compile-time errors vs. Run-time errors

• Efficient representation of code
• Compiler can apply many complex optimizations

without much additional work from programmers
• Compiler does work once, but program may be run

many times
6

Java is Object-Oriented

• Language often influences the way we
approach/think about a problem

• Object-oriented programming is how we will
design our programs in this course
• OOP may seem unnatural at first, but try to think

in the OOP mindset and give it a chance; it’ll help
to build intuition for its benefits and limits

7

8

OOP: OBJECT ORIENTED
PROGRAMMING

9

Classes, objects, and interfaces

• Classes let us define our own types.
• Objects are instances of class types
• Example: Think about the abstract concept of a car.

Here are three instances of a car:

• Conceptually, all these cars have the same high-level interface (wheels,
doors, color, transmission, top speed, etc.) but individual cars differ in
their details

• In OOP paradigm, we could define a car class, and then instantiate that
class to create individual car objects.

10

11

Object-Oriented Programming

• Objects are building blocks of Java software

• Programs are collections of interacting objects
• Cooperate to complete tasks

• Represent the “state” of the program
• Communicate by sending messages to each other

• Through method invocation

12

Object-Oriented Programming
• With enough creativity, objects can model

almost anything:
• Physical items – cars, dice, book
• Concepts – time, relationships
• Processing – sort, simulation, gameplay

• Objects contain:
• State (instance variables)
• Functionality (methods)

13

Object Support in Java
• Java supports the creation of programmer-

defined types called class types
• A class declaration defines data components

and functionality of a type of object
• Data components: instance variable declarations
• Functionality: method declarations

• Constructor(s): special method(s) that describe the steps
needed to create an object (instance) of this class type

14

A Simple Class
Task: Define a type that stores information
about a student: name, age, and a single grade.
• Declare a Java class called Student with data

components (fields/instance variables):
String name;
int age;
char grade;

• and methods for accessing/modifying fields:
• “Getters”: getName, getAge, getGrade
• “Setters”: setAge, setGrade

• Declare a constructor, also called Student

class Student {
// instance variables
int age;
String name;
char grade;

// A constructor
Student(int theAge, String theName,

char theGrade) {
age = theAge;
name = theName;
grade = theGrade;

}

// Methods for accessing/modifying objects
// ...see next slide...

15

int getAge() { return age; }

String getName() { return name; }

char getGrade() { return grade; }

void setAge(int theAge) {
age = theAge;

}

void setGrade(char theGrade) {
grade = theGrade;

}
} // end of class declaration from previous slide

16

Constructors

Principle: Use constructors to initialize the state of an
object, nothing more.
• What is state? instance variables

• Frequently constructors are short simple methods

• More complex constructors will typically use
helper methods. Why?
• A class may have more than one constructor!

• Your constructors can call other constructors or
helper methods in order to reuse code
• Never copy/paste code!!! 17

IMPROVING THE STUDENT
CLASS

18

Access Modifiers

• public, private, and protected are called
access modifiers
• They control access of other classes to instance variables and

methods of a given class
• public : Accessible to all other classes

• private : Accessible only to the class declaring it

• protected : Accessible to the class declaring it and its subclasses

• Data-Hiding Principle (encapsulation)
• Make instance variables private/protected
• Use public methods to access/modify object data

19

public class Student {
// instance variables
protected int age;
protected String name;
protected char grade;

// A constructor
public Student(int theAge, String theName,

char theGrade) {
age = theAge;
name = theName;
grade = theGrade;

}

// Methods for accessing/modifying objects
// ...see next slide...

20

public int getAge() { return age; }

public String getName() { return name; }

public char getGrade() { return grade; }

public void setAge(int theAge) {
age = theAge;

}

public void setGrade(char theGrade) {
grade = theGrade;

}
} // end of class declaration from previous slide

21

TESTING THE STUDENT
CLASS

22

Testing the Student Class
public class TestStudent {

public static void main(String[] args) {
Student a = new Student(18, ”Bill J", 'B');
Student b = new Student(19, ”Bill L", 'A');
// Some code to nicely print student details
System.out.println(a.getName() + ", " +

a.getAge() + ", " + a.getGrade());
System.out.println(b.getName() + ", " +

b.getAge() + ", " + b.getGrade());
// Ugly printing (calls default toString())
System.out.println(a);
System.out.println(b);

}
} 23

“Special” Methods

• Everything “inherits” from the class
java.lang.Object

• In particular, we’ll take advantage of a few
methods repeatedly in this course:
• String toString()
• boolean equals(Object other)
• int hashCode()

• Today, let’s just look at toString()

24

Worth Noting

• We can create as many Student objects as we
need, including arrays of Students

Student[] class = new Student[3];
class[0] = new Student(18, ”Huey", 'A');
class[1] = new Student(20, ”Dewey", 'B');
class[2] = new Student(21, ”Louie", 'A');

• Fields are private: only accessible in Student class
• Methods are public: accessible to other classes

• Some methods return values, others do not
• public String getName();
• public void setAge(int theAge); 25

public class Student {
// instance variables
private int age;
private String name;
private char grade;

// A constructor
public Student(int age, String name,

char grade) {
// What would age, name, grade
// refer to here...?

}

26

More Gotchas

public class Student {
// instance variables
private int age;
private String name;
private char grade;

// A constructor
public Student(int age, String name,

char grade) {
this.age = age;
this.name = name;
this.grade = grade;

}
27

For clarity, can use ‘this’

INTERFACES: A WAY TO
STANDARDIZE BEHAVIOR

Interfaces

• We’ve used the term interface to colloquially
describe the way that we interact with
objects, but a Java interface is a contract
• Defines methods (name, parameters, return

types) that a class must implement

• Kind of like a “class recipe”

• Multiple classes can implement the same
interface, and we are guaranteed that they all
implement the required methods

A Student Interface
Task: Rework the Student class into an
interface that defines the behaviors that any
“student class type” must provide in order to be
useful. Note, we only care about behavior, not
implementation.
Interfaces do not specify state or provide code*.
Declare a Java interface called Student with
public methods:
• Getters: getName, getAge, getGrade
• Setters: setAge, setGrade

public interface Student {
// Note: no instance variables, constructor,
// or implementation
public int getAge();
public String getName();
public char getGrade();
public void setAge(int theAge);
public void setGrade(char theGrade);

}

Student Interface

Interfaces

• A class can implement an interface by providing
code for each required method.

• If we have code that depends only on the
functionality described in the interface, that
code can work for objects of any class that
implements the interface!
• Recall our eternal goal: write code exactly once

A Williams Student
Task: Write a WilliamsStudent class that
implements the Student interface. Note, it
must implement everything in the interface, but it
can also add extra functionality.

• protected String[] clubs;
• public String[] getClubs();
• public void setClubs(String clubs[]);

(Note: I’m told that every Williams student participates in at
least fourteen extra-curricular activities)

35

(NO) STATIC

Static Variables
• Variables can either be “attached” to the class

or to instances of the class.
• Static variables are not associated with any one object’s

state. They are usually properties or definitions.

• Non-static variables are called instance variables because
they are tied to exactly one instance of an object. They
can be accessed with the keyword ‘this’.

• Ask yourself: Is it possible that the value of this variable
will vary across different objects?
• Consider a Rectangle class :

– numSides;
– height;

static (all rectangles have 4 sides)

not static (rectangles can have different dimensions)

Static Methods
• Methods can either be “attached” to the class

or to instances of the class.
• Static methods do not depend on the state of the object.

They can be answered without anything that could
reference the keyword “this”. Called using the class name.

• Non-static methods rely on an object’s state, often
depending on the values of instance variables. Called on an
instance.

• Ask yourself: Does this method depend on the state of the
object, or is it always the same regardless?
• Consider a Rectangle class:

– getArea();
– calculateArea(int h, int w); static (formula; all

info provided as inputs)

not static (depends on a particular rectangle’s dims)

public static void main(String[] args) {
// try to access a student’s age
System.out.println(getAge());
// Wrong! Which student? getAge is not static,
// so we need to call it on a particular object

// try to access a student’s age (correctly)
Student s = new WilliamsStudent(18, “Ron”, ‘C’);
System.out.println(s.getAge());

}

More Gotchas

