
CSCI 136
Data Structures &

Advanced Programming

Measuring Complexity
Fall 2020

BillBill >> Bill+Bill
(as Bill → ∞)

Measuring Complexity

Measuring Computational Cost

Consider these two code fragments…
for (int i=0; i < arr.length; i++)

if (arr[i] == x) return “Found it!”;

…and…

for (int i=0; i < arr.length; i++)

for (int j=0; j < arr.length; j++)

if(i !=j && arr[i] == arr[j]) return ”Match!”;

How long does it take to execute each block?
3

Measuring Computational Cost

• How can we measure the amount of work
needed by a computation?
• Absolute clock time

• Problems?
– Different machines have different clock rates

– Too much other stuff happening (network, OS, etc)

– Not consistent. Need lots of tests to predict
future behavior

4

Measuring Computational Cost

• Counting computations
• Count all computational steps?
• Count how many “expensive” operations were

performed?
• Count number of times “x” happens?

• For a specific event or action “x”
• i.e., How many times a certain variable changes

• Question: How accurate do we need to be?
• 64 vs 65? 100 vs 105? Does it really matter??

5

An Example
// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0 // A wild guess
for(int i = 1; i < arr.length; i++)

if (arr[maxPos] < arr[i]) maxPos = i;
return maxPos;

}

• Can we count steps exactly?
• ”if” makes it hard

• Idea: Overcount: assume “if” block always runs
• Overcounting gives upper bound on run time
• Can also undercount for lower bound
• Overcount: 4(n-1) + 4; undercount: 3(n-1) + 4

Measuring Computational Cost

• Rather than keeping exact counts, we want to
know the order of magnitude of occurrences
• 60 vs 600 vs 6000, not 65 vs 68

• n, not 4(n-1) + 4

• We want to make comparisons without
looking at details and without running tests

• Avoid using specific numbers or values
• Look for overall trends

7

Measuring Computational Cost

• How do number of operations scale with
problem size?
• E.g.: If I double the size of the problem instance, how

much longer will it take to solve:
• Find maximum: n – 1 à (2n) – 1 (≈ twice as long)
• Bubble sort: n(n-1)/2 à 2n(2n – 1)/2 (≈ 4 times as long)
• Subset sum: 2n-1 à 22n-1 (2n times as long!!!)
• Etc.

• We will also measure amount of space used by an
algorithm using the same ideas….

8

Function Growth

Consider the following functions, for x ≥ 1
• f(x) = 1
• g(x) = log2(x) // Reminder: if x=2^n, log2(x) = n

• h(x) = x
• m(x) = x log2(x)
• n(x) = x2

• p(x) = x3

• r(x) = 2x

9

Function Growth

1

log2(x)

x

x log2(x)

x2

2x

2 4 6 8 10

-20

20

40

60

Function Growth

• Rule of thumb: ignore multiplicative constants
• Examples:
• Treat n and n/2 as same order of magnitude
• n2/1000, 2n2, and 1000n2 are “pretty much” just n2

• a0nk + a1nk-1 + a2nk-2 + … ak is roughly nk

• The key is to understand the relative
magnitudes (ratio of magnitudes) of functions

• Ex: 3x4 -10x3 -1)/x4 ≅ 3 (Why?)
• So 3x4 -10x3 -1 grows “like” x4

11

Function Growth

Why does 3x4 -10x3 -1 grows “like” x4?

3𝑥! − 10𝑥" − 1
𝑥!

= 3 −
10
𝑥
−
1
𝑥!

As 𝑥 → ∞, note that 3 − #$
%
− #

%!
→ 3

Ratio of the functions is ≅ constant as x grows
12

Function Growth

Example: 3x4 -10x3 -1 grows much more slowly than x5

3𝑥! − 10𝑥" − 1
𝑥#

=
3
𝑥
−
10
𝑥$
−
1
𝑥#

As 𝑥 → ∞, note that
"
%
− &'

%!
− &

%"
→ 0

Ratio of the functions is ≅ 0 as x grows

13

Function Growth

Example: 3x4 -10x3 -1 grows much more quickly than x3

3𝑥! − 10𝑥" − 1
𝑥"

= 3𝑥 − 10 −
1
𝑥"

As 𝑥 → ∞, note that 3𝑥 − 10 − &
%#
→ 3𝑥 − 10 → ∞

Ratio of the functions grows large as x grows

14

Asymptotic Bounds
How can we capture this idea?
What is the idea?

• If
((%)
+(%)

≅ 0 as 𝑥 → ∞ then 𝑔(𝑥) grows [much] faster than

𝑓(𝑥)

• If, for some constant c > 0,
((%)
+(%)

≅ c as 𝑥 → ∞, then

𝑔(𝑥) grows at the same rate as 𝑓(𝑥)

• If
((%)
+(%)

→ ∞ as 𝑥 → ∞ then 𝑔(𝑥) grows [much] more

slowly than 𝑓(𝑥)
• Let's make this precise…. 15

Asymptotic Bounds (Big-O)

• A function f(n) is O(g(n)) if there exist positive
constants c and n0 such that

|f(n)| ≤ c· g(n) for all n ³ n0
• Notes
• c· g(n) is “at least as big as” f(n) for large n
• Ratios are replaced by inequality
• Absolute value?

• Capture idea that -f(n) grows in magnitude at the same
rate as f(n)

16

Asymptotic Bounds (Big-O)

• Examples:
• f(n) = n2/2 is O(n2)

• Here g(n) = n2

• n2/2 ≤ c n2 for c = ½ and all n ≥	0	(so n0=0)

• f(n) = 1000n3 is O(n3)
• Here g(n) = n3

• 1000n3 ≤ c n3 for c = 1000 and all n ≥	0	(so n0=0)

• f(n) = (n+5)/2 is O(n)
• Here g(n) = n

• (n+5)/2 ≤ c n for c = 1 and all n ≥	5	(so n0=5)
17

Determining “Best” Upper Bounds

• We typically want the most conservative upper bound
when we estimate running time
• And among those, the simplest

• Example: Let f(n) = 3n2

• f(n) is O(n2)
• f(n) is O(n3)
• f(n) is O(2n) (see next slide)
• f(n) is NOT O(n) (!!)

• “Best” upper bound is O(n2)
• We care about c and n0 in practice, but focus on size

of g when designing algorithms and data structures
18

Input-dependent Running Times
• Algorithms may have different running times for

different inputs of the same size
• Best case (typically not useful)

• Find item in first place that we look: O(1)

• Worst case (generally useful) ß This is us!
• Don’t find item in list: O(n)
• Looking for duplicates when there are none: O(n2)

• Average case (useful, but often hard to compute)
• Linear search O(n)
• QuickSort random array O(n log n) ß We’ll sort soon

19

What’s n0? Messy Functions

• Example: Let f(n) = 3n2 - 4n +1. f(n) is O(n2)
• Well, 3n2 - 4n +1 ≤ 3n2 +1 ≤ 4n2, for n ≥ I
• So, for c = 4 and n0 = 1, we satisfy Big-O definition

• Example: Let f(n) = nk, for any fixed k ≥ 1. f(n) is O(2n)
• Harder to show: Is nk ≤ c 2n for some c > 0 and large enough n?
• It is if log2(nk) ≤ log2(2n), that is, if k log2(n) ≤ n.
• That is if k ≤ n/log2(n).
• But calculus tells us tha n/log2(n) à∞ as n à ∞
• This implies that for some n0 on n/log2(n) ≥ k if n ≥ n0

• Thus n ≥ k log2(n) for n ≥ n0 and so 2n ≥ nk

20

Presentation Ends Here

Vector Operations : Worst-Case
For n = Vector size (not capacity!):
• O(1): size(), capacity(), isEmpty(), get(i), set(i),

firstElement(), lastElement()
• O(n): indexOf(), contains(), remove(elt), remove(i)
• What about add methods?

• If Vector doesn’t need to grow
• add(elt) is O(1) but add(elt, i) is O(n)

• Otherwise, depends on ensureCapacity() time
• Time to compute newLength : O(log2(n))
• Time to copy array: O(n)
• O(log2(n)) + O(n) is O(n)

22

Vector: Add Method Complexity

23

Suppose we grow the Vector’s array by a fixed abount d.
How long does it take to add n items to an empty
Vector?
• The array will be copied each time its capacity needs

to exceed a multiple of d
• At sizes 0, d, 2d, …, n/d*d

• Copying an array of size kd takes ckd steps for some
constant c, giving a total of

Vector: Add Method Complexity
Suppose we want to grow the Vector’s array by doubling.
How long does it take to add n items to an empty Vector?
• The array will be copied each time it’s capacity needs to

exceed a power of 2.
• At sizes 0, 1, 2, 4, 8, …, 2log

2
n

• Copying an array of size 2k takes c2k steps for some
constant c, giving a total of:

24

Common Complexities
For n = measure of problem size:
• O(1): constant time and space
• O(log n): divide and conquer algorithms, binary search
• O(n): linear dependence, simple list lookup
• O(n log n): divide and conquer sorting algorithms
• O(n2): matrix addition, selection sort
• O(n3): matrix multiplication
• O(n12): Original AKS primality test for n-bit integers
• O(2n): subset sum, graph 3-coloring, satisfiability, ...
• O(n!): traveling salesman problem (in fact O(n22n))

25

