CSCI 136 Data Structures & Advanced Programming

> Measuring Complexity Fall 2020 Bill^{Bill} >> Bill+Bill (as Bill → ∞)

Measuring Complexity

Consider these two code fragments...

for (int i=0; i < arr.length; i++)
if (arr[i] == x) return "Found it!";</pre>

....and....

```
for (int i=0; i < arr.length; i++)
for (int j=0; j < arr.length; j++)
if( i !=j && arr[i] == arr[j]) return "Match!";</pre>
```

How long does it take to execute each block?

- How can we measure the amount of work needed by a computation?
 - Absolute clock time
 - Problems?
 - Different machines have different clock rates
 - Too much other stuff happening (network, OS, etc)
 - Not consistent. Need lots of tests to predict future behavior

Counting computations

- Count all computational steps?
- Count how many "expensive" operations were performed?
- Count number of times "x" happens?
 - For a specific event or action "x"
 - i.e., How many times a certain variable changes
- Question: How accurate do we need to be?
 - 64 vs 65? 100 vs 105? Does it really matter??

An Example

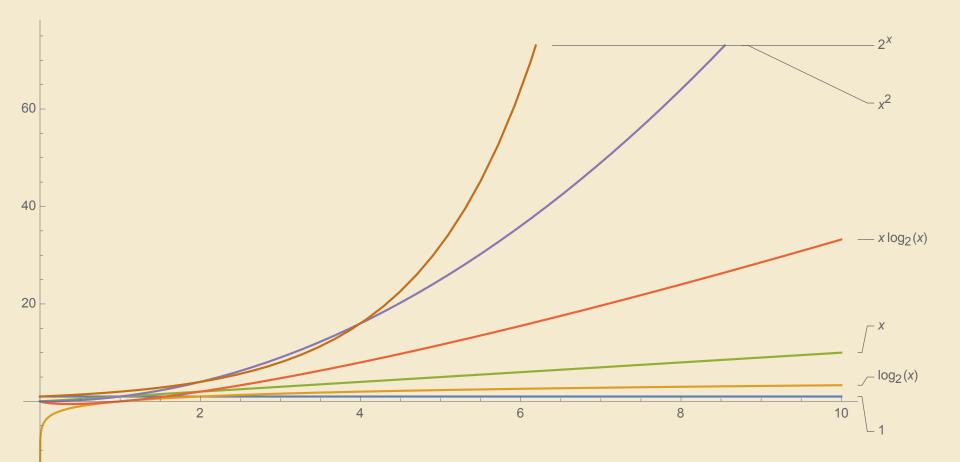
```
// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {
    int maxPos = 0 // A wild guess
    for(int i = 1; i < arr.length; i++)
        if (arr[maxPos] < arr[i]) maxPos = i;
    return maxPos;</pre>
```

- }
- Can we count steps exactly?
 - "if" makes it hard
- Idea: Overcount: assume "if" block always runs
- Overcounting gives upper bound on run time
- Can also undercount for lower bound
- Overcount: 4(n-1) + 4; undercount: 3(n-1) + 4

- Rather than keeping exact counts, we want to know the order of magnitude of occurrences
 - 60 vs 600 vs 6000, not 65 vs 68
 - n, not 4(n-1) + 4
- We want to make comparisons without looking at details and without running tests
- Avoid using specific numbers or values
- Look for overall trends

- How do number of operations scale with problem size?
 - E.g.: If I double the size of the problem instance, how much longer will it take to solve:
 - Find maximum: $n I \rightarrow (2n) I$ (\approx twice as long)
 - Bubble sort: $n(n-1)/2 \rightarrow 2n(2n-1)/2 \ (\approx 4 \text{ times as long})$
 - Subset sum: $2^{n-1} \rightarrow 2^{2n-1}$ (2^n times as long!!!)
 - Etc.
- We will also measure amount of space used by an algorithm using the same ideas....

- Consider the following functions, for $x \ge 1$
- f(x) = 1
- g(x) = log₂(x) // Reminder: if x=2ⁿ, log₂(x) = n
- h(x) = x
- $m(x) = x \log_2(x)$
- $n(x) = x^2$
- $p(x) = x^3$
- r(x) = 2×



-20

- Rule of thumb: ignore multiplicative constants
- Examples:
 - Treat n and n/2 as same order of magnitude
 - n²/1000, 2n², and 1000n² are "pretty much" just n²
 - $a_0n^k + a_1n^{k-1} + a_2n^{k-2} + \cdots + a_k$ is roughly n^k
- The key is to understand the relative magnitudes (ratio of magnitudes) of functions
- Ex: $3x^4 10x^3 1$ / $x^4 \cong 3$ (Why?)
 - So 3x⁴ 10x³ 1 grows "like" x⁴

Why does $3x^4 - 10x^3 - 1$ grows "like" $x^{4?}$

$$\frac{3x^4 - 10x^3 - 1}{x^4} = 3 - \frac{10}{x} - \frac{1}{x^4}$$

As
$$x \to \infty$$
, note that $3 - \frac{10}{x} - \frac{1}{x^4} \to 3$

Ratio of the functions is \cong constant as x grows

Example: $3x^4 - 10x^3 - 1$ grows much more slowly than x^5

$$\frac{3x^4 - 10x^3 - 1}{x^5} = \frac{3}{x} - \frac{10}{x^2} - \frac{1}{x^5}$$

As
$$x \to \infty$$
, note that $\frac{3}{x} - \frac{10}{x^2} - \frac{1}{x^5} \to 0$

Ratio of the functions is $\cong 0$ as x grows

Example: $3x^4 - 10x^3 - 1$ grows much more quickly than x^3

$$\frac{3x^4 - 10x^3 - 1}{x^3} = 3x - 10 - \frac{1}{x^3}$$

As $x \to \infty$, note that $3x - 10 - \frac{1}{x^3} \to 3x - 10 \to \infty$

Ratio of the functions grows large as x grows

Asymptotic Bounds

How can we capture this idea? What *is* the idea?

- If $\frac{f(x)}{g(x)} \cong 0$ as $x \to \infty$ then g(x) grows [much] faster than f(x)
- If, for some constant c > 0, $\frac{f(x)}{g(x)} \cong c$ as $x \to \infty$, then g(x) grows at the same rate as f(x)
- If $\frac{f(x)}{g(x)} \to \infty$ as $x \to \infty$ then g(x) grows [much] more slowly than f(x)
- Let's make this precise....

Asymptotic Bounds (Big-O)

- A function f(n) is O(g(n)) if there exist positive constants c and n₀ such that
 |f(n)| ≤ c ⋅ g(n) for all n ≥ n₀
- Notes
 - c · g(n) is "at least as big as" f(n) for large n
 - Ratios are replaced by inequality
 - Absolute value?
 - Capture idea that -f(n) grows in magnitude at the same rate as f(n)

Asymptotic Bounds (Big-O)

• Examples:

- $f(n) = n^2/2$ is $O(n^2)$
 - Here g(n) = n²
 - $n^2/2 \le c n^2$ for $c = \frac{1}{2}$ and all $n \ge 0$ (so $n_0=0$)
- $f(n) = 1000n^3$ is $O(n^3)$
 - Here g(n) = n³
 - $1000n^3 \le c n^3$ for c = 1000 and all $n \ge 0$ (so $n_0=0$)
- f(n) = (n+5)/2 is O(n)
 - Here g(n) = n
 - $(n+5)/2 \le c n$ for c = 1 and all $n \ge 5$ (so $n_0=5$)

Determining "Best" Upper Bounds

- We typically want the *most conservative* upper bound when we estimate running time
 - And among those, the simplest
- Example: Let f(n) = 3n²
 - f(n) is O(n²)
 - f(n) is O(n³)
 - f(n) is O(2ⁿ) (see next slide)
 - f(n) is NOT O(n) (!!)
- "Best" upper bound is O(n²)
- We care about c and n₀ in practice, but focus on size of g when designing algorithms and data structures

Input-dependent Running Times

- Algorithms may have different running times for different inputs of the same size
- Best case (typically not useful)
 - Find item in first place that we look: O(I)
- - Don't find item in list: O(n)
 - Looking for duplicates when there are none: $O(n^2)$
- Average case (useful, but often hard to compute)
 - Linear search O(n)
 - QuickSort random array O(n log n) ← We'll sort soon

What's n₀? Messy Functions

- Example: Let $f(n) = 3n^2 4n + 1$. f(n) is $O(n^2)$
 - Well, $3n^2 4n + 1 \le 3n^2 + 1 \le 4n^2$, for $n \ge 1$
 - So, for c = 4 and $n_0 = 1$, we satisfy Big-O definition
- Example: Let $f(n) = n^k$, for any fixed $k \ge 1$. f(n) is $O(2^n)$
 - Harder to show: Is $n^k \le c 2^n$ for some c > 0 and large enough n?
 - It is if $log_2(n^k) \le log_2(2^n)$, that is, if $k log_2(n) \le n$.
 - That is if $k \le n/\log_2(n)$.
 - But calculus tells us tha $n/\log_2(n) \rightarrow \infty$ as $n \rightarrow \infty$
 - This implies that for some n_0 on $n/log_2(n) \ge k$ if $n \ge n_0$
 - Thus $n \ge k \log_2(n)$ for $n \ge n_0$ and so $2^n \ge n^k$

Presentation Ends Here

Vector Operations : Worst-Case

For n = Vector size (not capacity!):

- O(I): size(), capacity(), isEmpty(), get(i), set(i), firstElement(), lastElement()
- O(n): indexOf(), contains(), remove(elt), remove(i)
- What about add methods?
 - If Vector doesn't need to grow
 - add(elt) is O(1) but add(elt, i) is O(n)
 - Otherwise, depends on ensureCapacity() time
 - Time to compute newLength : O(log₂(n))
 - Time to copy array: O(n)
 - $O(log_2(n)) + O(n)$ is O(n)

Vector: Add Method Complexity

Suppose we grow the Vector's array by a fixed abount d. How long does it take to add n items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a multiple of d
 - At sizes 0, d, 2d, ..., n/d*d
- Copying an array of size kd takes ckd steps for some constant c, giving a total of

$$\sum_{k=1}^{n/d} c \cdot k \cdot d = c \cdot d \sum_{k=1}^{n/d} k = c \cdot d \cdot \frac{\binom{n}{d}\binom{n}{d+1}}{2} = O(n^2)$$

Vector: Add Method Complexity

Suppose we want to grow the Vector's array by doubling. How long does it take to add *n* items to an empty Vector?

- The array will be copied each time it's capacity needs to exceed a power of 2.
 - At sizes 0, 1, 2, 4, 8, ..., 2^{log}2ⁿ
- Copying an array of size 2^k takes c2^k steps for some constant c, giving a total of:

$$\sum_{k=1}^{\log_2 n} c \cdot 2^k = c \sum_{k=1}^{\log_2 n} 2^k = c \cdot (2^{1+\log_2 n} - 1) = O(n)$$

Common Complexities

For n = measure of problem size:

- O(I): constant time and space
- O(log n): divide and conquer algorithms, binary search
- O(n): linear dependence, simple list lookup
- O(n log n): divide and conquer sorting algorithms
- O(n²): matrix addition, selection sort
- O(n³): matrix multiplication
- O(n¹²): Original AKS primality test for n-bit integers
- O(2ⁿ): subset sum, graph 3-coloring, satisfiability, ...
- O(n!): traveling salesman problem (in fact O(n²2ⁿ))