CSCI 136 Data Structures \& Advanced Programming

Measuring Complexity
Fall 2020
Bill ${ }^{\text {Bill }} \gg$ Bill + Bill
(as Bill $\rightarrow \infty$)

Measuring Complexity

Measuring Computational Cost

Consider these two code fragments...

```
for (int i=0; i < arr.length; i++)
    if (arr[i] == x) return "Found it!";
```

...and...

```
for (int i=0; i < arr.length; i++)
    for (int j=0; j < arr.length; j++)
    if( i !=j && arr[i] == arr[j]) return "Match!";
```

How long does it take to execute each block?

Measuring Computational Cost

- How can we measure the amount of work needed by a computation?
- Absolute clock time
- Problems?
- Different machines have different clock rates
- Too much other stuff happening (network, OS, etc)
- Not consistent. Need lots of tests to predict future behavior

Measuring Computational Cost

- Counting computations
- Count all computational steps?
- Count how many "expensive" operations were performed?
- Count number of times " x " happens?
- For a specific event or action " x "
- i.e., How many times a certain variable changes
- Question: How accurate do we need to be?
- 64 vs 65 ? 100 vs I05? Does it really matter??

An Example

```
// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {
int maxPos = 0 // A wild guess
for(int i = 1; i < arr.length; i++)
    if (arr[maxPos] < arr[i]) maxPos = i;
```

 return maxPos;
 \}

- Can we count steps exactly?
- "if" makes it hard
- Idea: Overcount: assume "if" block always runs
- Overcounting gives upper bound on run time
- Can also undercount for lower bound
- Overcount: 4(n-I) + 4; undercount: $3(n-1)+4$

Measuring Computational Cost

- Rather than keeping exact counts, we want to know the order of magnitude of occurrences
- 60 vs 600 vs 6000 , not 65 vs 68
- n, not $4(\mathrm{n}-\mathrm{I})+4$
- We want to make comparisons without looking at details and without running tests
- Avoid using specific numbers or values
- Look for overall trends

Measuring Computational Cost

- How do number of operations scale with problem size?
- E.g.: If I double the size of the problem instance, how much longer will it take to solve:
- Find maximum: $\mathrm{n}-\mathrm{I} \rightarrow(2 \mathrm{n})-\mathrm{I}$ (\approx twice as long)
- Bubble sort: $n(n-I) / 2 \rightarrow 2 n(2 n-I) / 2$ (≈ 4 times as long)
- Subset sum: $2^{n-1} \rightarrow 2^{2 n-1}$ (2^{n} times as long!!!)
- Etc.
- We will also measure amount of space used by an algorithm using the same ideas....

Function Growth

Consider the following functions, for $x \geq 1$

- $f(x)=1$
- $g(x)=\log _{2}(x) / /$ Reminder: if $x=2^{\wedge} n, \log _{2}(x)=n$
- $h(x)=x$
- $m(x)=x \log _{2}(x)$
- $n(x)=x^{2}$
- $p(x)=x^{3}$
- $r(x)=2^{x}$

Function Growth

Function Growth

- Rule of thumb: ignore multiplicative constants
- Examples:
- Treat n and $\mathrm{n} / 2$ as same order of magnitude
- $\mathrm{n}^{2} / 1000,2 \mathrm{n}^{2}$, and $1000 \mathrm{n}^{2}$ are "pretty much" just n^{2}
- $a_{0} n^{k}+a_{1} n^{k-1}+a_{2} n^{k-2+\ldots} a_{k}$ is roughly n^{k}
- The key is to understand the relative magnitudes (ratio of magnitudes) of functions
- Ex: $\left.3 x^{4}-10 x^{3}-1\right) / x^{4} \cong 3$ (Why?)
- So $3 x^{4}-10 x^{3}-1$ grows "like" x^{4}

Function Growth

Why does $3 x^{4}-10 x^{3}-1$ grows "like" x^{4} ?

$$
\frac{3 x^{4}-10 x^{3}-1}{x^{4}}=3-\frac{10}{x}-\frac{1}{x^{4}}
$$

As $x \rightarrow \infty$, note that $3-\frac{10}{x}-\frac{1}{x^{4}} \rightarrow 3$

Ratio of the functions is \cong constant as \times grows

Function Growth

Example: $3 x^{4}-10 x^{3}-1$ grows much more slowly than x^{5}

$$
\frac{3 x^{4}-10 x^{3}-1}{x^{5}}=\frac{3}{x}-\frac{10}{x^{2}}-\frac{1}{x^{5}}
$$

As $x \rightarrow \infty$, note that $\frac{3}{x}-\frac{10}{x^{2}}-\frac{1}{x^{5}} \rightarrow 0$

Ratio of the functions is $\cong 0$ as \times grows

Function Growth

Example: $3 x^{4}-10 x^{3}-1$ grows much more quickly than x^{3}

$$
\frac{3 x^{4}-10 x^{3}-1}{x^{3}}=3 x-10-\frac{1}{x^{3}}
$$

As $x \rightarrow \infty$, note that $3 x-10-\frac{1}{x^{3}} \rightarrow 3 x-10 \rightarrow \infty$

Ratio of the functions grows large as \times grows

Asymptotic Bounds

How can we capture this idea?
What is the idea?

- If $\frac{f(x)}{g(x)} \cong 0$ as $x \rightarrow \infty$ then $g(x)$ grows [much] faster than $f(x)$
- If, for some constant $\mathrm{c}>0, \frac{f(x)}{g(x)} \cong \mathrm{c}$ as $x \rightarrow \infty$, then $g(x)$ grows at the same rate as $f(x)$
- If $\frac{f(x)}{g(x)} \rightarrow \infty$ as $x \rightarrow \infty$ then $g(x)$ grows [much] more slowly than $f(x)$
- Let's make this precise....

Asymptotic Bounds (Big-O)

- A function $f(n)$ is $O(g(n))$ if there exist positive constants c and n_{0} such that

$$
|f(n)| \leq c \cdot g(n) \text { for all } n \geq n_{0}
$$

- Notes
- $c \cdot g(n)$ is "at least as big as" $f(n)$ for large n
- Ratios are replaced by inequality
- Absolute value?
- Capture idea that -f(n) grows in magnitude at the same rate as $f(n)$

Asymptotic Bounds (Big-O)

- Examples:
- $f(n)=n^{2} / 2$ is $O\left(n^{2}\right)$
- Here $g(n)=n^{2}$
- $n^{2} / 2 \leq c n^{2}$ for $c=1 / 2$ and all $n \geq 0\left(\right.$ so $\left.n_{0}=0\right)$
- $f(n)=1000 n^{3}$ is $O\left(n^{3}\right)$
- Here $g(n)=n^{3}$
- $1000 n^{3} \leq c n^{3}$ for $c=1000$ and all $n \geq 0\left(\right.$ so $\left.n_{0}=0\right)$
- $f(n)=(n+5) / 2$ is $O(n)$
- Here $g(n)=n$
- $(\mathrm{n}+5) / 2 \leq \mathrm{c} n$ for $\mathrm{c}=\mathrm{I}$ and all $\mathrm{n} \geq 5$ (so $\left.\mathrm{n}_{0}=5\right)$

Determining "Best" Upper Bounds

- We typically want the most conservative upper bound when we estimate running time
- And among those, the simplest
- Example: Let $\mathrm{f}(\mathrm{n})=3 \mathrm{n}^{2}$
- $f(n)$ is $O\left(n^{2}\right)$
- $f(n)$ is $O\left(n^{3}\right)$
- $f(n)$ is $O\left(2^{n}\right)$ (see next slide)
- $\mathrm{f}(\mathrm{n})$ is NOT O(n) (!!)
- "Best" upper bound is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- We care about \mathbf{c} and $\mathbf{n}_{\mathbf{0}}$ in practice, but focus on size of \boldsymbol{g} when designing algorithms and data structures

Input-dependent Running Times

- Algorithms may have different running times for different inputs of the same size
- Best case (typically not useful)
- Find item in first place that we look: $\mathrm{O}(\mathrm{I})$
- Worst case (generally useful) \leftarrow This is us!
- Don't find item in list: $O(n)$
- Looking for duplicates when there are none: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Average case (useful, but often hard to compute)
- Linear search O(n)
- QuickSort random array $\mathrm{O}(\mathrm{n} \log \mathrm{n}) \leftarrow$ We'll sort soon

What's n_{0} ? Messy Functions

- Example: Let $\mathrm{f}(\mathrm{n})=3 \mathrm{n}^{2}-4 \mathrm{n}+1 . \mathrm{f}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Well, $3 n^{2}-4 n+1 \leq 3 n^{2}+1 \leq 4 n^{2}$, for $n \geq$ I
- So, for $\mathrm{c}=4$ and $\mathrm{n}_{0}=1$, we satisfy Big-O definition
- Example: Let $f(n)=n^{k}$, for any fixed $k \geq 1$. $f(n)$ is $O\left(2^{n}\right)$
- Harder to show: Is $n^{k} \leq c 2^{n}$ for some $c>0$ and large enough n ?
- It is if $\log _{2}\left(n^{k}\right) \leq \log _{2}\left(2^{n}\right)$, that is, if $k \log _{2}(n) \leq n$.
- That is if $k \leq n / \log _{2}(n)$.
- But calculus tells us tha $\mathrm{n} / \log _{2}(\mathrm{n}) \rightarrow \infty$ as $\mathrm{n} \rightarrow \infty$
- This implies that for some n_{0} on $n / \log _{2}(n) \geq k$ if $n \geq n_{0}$
- Thus $n \geq k \log _{2}(n)$ for $n \geq n_{0}$ and so $2^{n} \geq n^{k}$

Presentation Ends Here

Vector Operations : Worst-Case

For $\mathrm{n}=$ Vector size (not capacity!):

- O(I): size(), capacity(), isEmpty(), get(i), set(i), firstElement(), lastElement()
- $\mathrm{O}(\mathrm{n})$: indexOf(), contains(), remove(elt), remove(i)
- What about add methods?
- If Vector doesn't need to grow
- add(elt) is $\mathrm{O}(\mathrm{I})$ but add(elt, i$)$ is $\mathrm{O}(\mathrm{n})$
- Otherwise, depends on ensureCapacity() time
- Time to compute newLength : $\mathrm{O}\left(\log _{2}(\mathrm{n})\right)$
- Time to copy array: $O(n)$
- $\mathrm{O}\left(\log _{2}(\mathrm{n})\right)+\mathrm{O}(\mathrm{n})$ is $\mathrm{O}(\mathrm{n})$

Vector: Add Method Complexity

Suppose we grow the Vector's array by a fixed abount d. How long does it take to add n items to an empty
Vector?

- The array will be copied each time its capacity needs to exceed a multiple of d
- At sizes 0, d, 2d, ..., n/d*d
- Copying an array of size kd takes ckd steps for some constant c , giving a total of

$$
\sum_{k=1}^{n / d} c \cdot k \cdot d=c \cdot d \sum_{k=1}^{n / d} k=c \cdot d \cdot \frac{(n / d)(n / d+1)}{2}=O\left(n^{2}\right)
$$

Vector: Add Method Complexity

Suppose we want to grow the Vector's array by doubling. How long does it take to add n items to an empty Vector?

- The array will be copied each time it's capacity needs to exceed a power of 2.
- At sizes $0, I, 2,4,8, \ldots, 2^{\log _{2} n}$
- Copying an array of size 2^{k} takes $\mathrm{c} 2^{\mathrm{k}}$ steps for some constant c, giving a total of:

$$
\sum_{k=1}^{\log _{2} n} c \cdot 2^{k}=c \sum_{k=1}^{\log _{2} n} 2^{k}=c \cdot\left(2^{1+\log _{2} n}-1\right)=O(n)
$$

Common Complexities

For $\mathrm{n}=$ measure of problem size:

- $O(1)$: constant time and space
- $O(\log n)$: divide and conquer algorithms, binary search
- $O(n)$: linear dependence, simple list lookup
- $O(n \log n)$: divide and conquer sorting algorithms
- $O\left(n^{2}\right)$: matrix addition, selection sort
- $\mathrm{O}\left(\mathrm{n}^{3}\right)$: matrix multiplication
- $O\left(n^{12}\right)$: Original AKS primality test for n-bit integers
- $O\left(2^{n}\right)$: subset sum, graph 3-coloring, satisfiability, ...
- $O(n!)$: traveling salesman problem (in fact $O\left(n^{2} 2^{n}\right)$)

