
CSCI 136
Data Structures &

Advanced Programming

Making Sorting Generic

Making Sorting Generic

2

Sorting Class-Based Objects

How can we sort items of a class-based type?
• Need to provide a mechanism for making

comparisons
• Unlike equality testing, the Object class

doesn’t define a “compare()” method 😟

• But provides two mechanisms
• Both based on implementing an interface

• The comparable interface
• The comparator interface

• We introduce both mechanisms here 3

Comparing Objects

Assumes that an ordering exists, denoted by, say,
≾, such that for any pair of items x and y, either
• x ≾ y or y ≾ x

• if both are true we say that x and y are equal in the ordering:
x ≅ y

• More precisely, the ordering needs these properties
• For all x: x ≾ x (reflexive)

• For all x, y: if x ≾ y and y ≾ x then x ≅ y (anti-symmetric)
• For all x, y: x ≾ y or y ≾ x (comparability)

• For all x,y,z: if x ≾ y and y ≾ z then x ≾ z (transitivity)

4

Searching & Sorting
The Comparable Interface

• Java provides an interface for comparisons between objects
• Provides a replacement for “<“ and “>” in recBinarySearch

• Java provides the Comparable interface, which specifies a
method compareTo()
• Any class that implements Comparable must provide compareTo()

public interface Comparable<T> {
//post: return < 0 if this smaller than other

return 0 if this equal to other
return > 0 if this greater than other

int compareTo(T other);
}

Comparable Interface

• Many Java-provided classes implement Comparable
• String (alphabetical order)

• Wrapper classes: Integer, Character, Boolean

• All Enum classes
• The magnitude of the values returned by compareTo() are

not important.
• We only care if the return value is positive, negative, or 0!

• Often we see -1, 0, 1, but it is up to the implementer

• For example, in one implementation of java I use
• "smaller".compareTo("larger") returns the value 7 !

Notes on compareTo()

• compareTo() defines a “natural ordering” of Objects
• There’s nothing “natural” about it…

• We can use compareTo() to implement sorting
algorithms on anyt generic List data structures!

• We can write methods that work on any type that
implements Comparable
• Let’s See some examples

• RecBinSearch.java

• BinSearchComparable.java

Recursive Binary Search

• Given an array a[] of positive integers in increasing
order, and an integer x, find location of x in a[].
• Take “indexOf” approach: return -1 if x is not in a[]

protected static int recBinarySearch(int a[], int value,
int low, int high) {

if (low > high) return -1;
else {

int mid = (low + high) / 2; //find midpoint
if (a[mid] == value) return mid; //first comparison

//second comparison
else if (a[mid] < value) //search upper half
return recBinarySearch(a, value, mid + 1, high);
else //search lower half

return recBinarySearch(a, value, low, mid - 1);
}

Comparable Recursive Binary Search
protected static <E extends Comparable<E>> int
recBinarySearch(E a[], E value, int low, int high) {

if (low > high) return -1;

int mid = (low + high) / 2; //find middle of array
int result = a[mid].compareTo(value);

if (result == 0) {
return mid; //we're done!

} else if (result < 0) {
//recurse on upper half
return recBinarySearch(a, value, mid + 1, high);

} else {
//recurse on bottom half
return recBinarySearch(a, value, low, mid - 1);

}
}

Comparable & compareTo

• The Comparable interface (Comparable<T>) is part of the
java.lang (not structure5) package.

• Other Java-provided structures can take advantage of objects
that implement Comparable
• See the Arrays class in java.util
• Example JavaArraysBinSearch

• Users of Comparable are urged to ensure that compareTo()
and equals() are consistent. That is,
• x.compareTo(y) == 0 exactly when x.equals(y) == true

• Note that Comparable limits user to a single ordering
• The syntax can get kind of dense

• See BinSearchComparable.java : a generic binary search method
• And even more cumbersome….

ComparableAssociation
• Suppose we want an ordered Dictionary, so that we can use binary

search instead of linear
• Structure5 provides a ComparableAssociation class that

implements Comparable.
• The class declaration for ComparableAssociation is

…wait for it...
public class ComparableAssociation<K extends Comparable<K>, V>

Extends Association<K,V> implements
Comparable<ComparableAssociation<K,V>>

(Yikes!)
• Example: Since Integer implements Comparable, we can write

• ComparableAssociation<Integer, String> myAssoc =
new ComparableAssociation(new Integer(567), “Bob”);

• We could then use Arrays.sort on an array of these

Comparators

• Limitations with Comparable interface?
• Comparable permits 1 order between objects

• What if compareTo() isn’t the desired ordering?
• What if Comparable isn’t implemented?

• Solution: Comparators

12

Comparators (Ch 6.8)

• A comparator is an object that contains a method that
is capable of comparing two objects

• Sorting methods can be written to apply a Comparator
to two objects when a comparison is to be performed

• Different comparators can be applied to the same data
to sort in different orders or on different keys

public interface Comparator <E> {
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by
// whether a is less than, equal to, or greater than b
public int compare(E a, E b);

}

13

Example
class Patient {

protected int age;
protected String name;
public Patient (String n, int a) { name = n; age = a; }
public String getName() { return name; }
public int getAge() { return age; }

}

class NameComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {

return a.getName().compareTo(b.getName());
}
// Note: No constructor; a “do-nothing” constructor is added by Java

}

public void <T> sort(T a[], Comparator<T> c) {
…
if (c.compare(a[i], a[max]) > 0) {…}

}

sort(patients, new NameComparator());

Note that Patient does
not implement
Comparable or
Comparator!

14

Selection Sort with Comparator

15

public static <E> int findPosOfMax(E[] a, int last,
Comparator<E> c) {

int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++)

if (c.compare(a[maxPos], a[i]) < 0)
maxPos = i;

return maxPos;
}
public static <E> void selectionSort(E[] a, Comparator<E> c) {

for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, i, big);

}
}

• The same array can be sorted in multiple ways by passing different
Comparator<E> values to the sort method;

Comparable vs Comparator
• Comparable Interface for class X
• Permits just one order between objects of class X
• Class X must implement a compareTo method
• Changing order requires rewriting compareTo

• And then recompiling class X

• Comparator Interface
• Allows creation of “compator classes” for class X
• Class X isn’t changed or recompiled
• Multiple Comparators for X can be developed

• Ex: Sort Strings by length (alphabetically for same-length)
• Ex: Sort names by last name instead of first name 16

