CSCI 136
Data Structures &
Advanced Programming

Making Sorting Generic

Making Sorting Generic

Sorting Class-Based Objects

How can we sort items of a class-based type!

* Need to provide a mechanism for making
comparisons

* Unlike equality testing, the Object class
doesn’t define a “compare()” method =

e But provides two mechanisms

* Both based on implementing an interface

e The comparable interface
* The comparator interface

* We introduce both mechanisms here

Comparing Objects

Assumes that an ordering exists, denoted by, say,
<, such that for any pair of items x and y, either
e xIyory=<x
* if both are true we say that x and y are equal in the ordering:
X=Y
* More precisely, the ordering needs these properties
e For all x: x < x (reflexive)
e Forall x, y: if x < yand y < x then x = y (anti-symmetric)
e For all x, y: x 2y ory < x (comparability)
e For all x,y,z: if x < y and y < z then x =< z (transitivity)

Searching & Sorting
The Comparable Interface

e Java provides an interface for comparisons between objects

* Provides a replacement for “<* and “>" in recBinarySearch

* Java provides the Comparable interface, which specifies a
method compareTo()

* Any class that implements Comparable must provide compareTo()

public interface Comparable<T> ({

//post: return < 0 if this smaller than other
return 0 if this equal to other
return > 0 if this greater than other

int compareTo(T other);

Comparable Interface

* Many Java-provided classes implement Comparable
e String (alphabetical order)
* Wrapper classes: Integer, Character, Boolean

e All Enum classes
e The magnitude of the values returned by compareTo () are
not important.
* We only care if the return value is positive, negative, or 0!

e Often we see -1, 0, I, but it is up to the implementer

* For example, in one implementation of java | use
e "smaller".compareTo("larger") returns the value 7!

Notes on compareTo()

compareTo () defines a “natural ordering” of Objects
e There’s nothing “natural” about it...

We can use compareTo () to implement sorting
algorithms on anyt generic List data structures!
We can write methods that work on any type that
implements Comparable

* Let’s See some examples
* RecBinSearch.java

e BinSearchComparable.java

Recursive Binary Search

e Given an array a[] of positive integers in increasing
order, and an integer X, find location of x in a[].

e Take “indexOf” approach: return -1 if x is not in a[]
protected static int recBinarySearch(int a[], int wvalue,

int low, int high) {
if (low > high) return -1;

else {
int mid = (low + high) / 2; //find midpoint
if (a[mid] == value) return mid; //first comparison
//second comparison
else if (a[mid] < value) //search upper half
return recBinarySearch(a, value, mid + 1, high);
else //search lower half
return recBinarySearch(a, value, low, mid - 1);

Comparable Recursive Binary Search

protected static <E extends Comparable<E>> int
recBinarySearch(E a[], E value, int low, int high) {

if (low > high) return -1;

int mid = (low + high) / 2; //find middle of array
int result = a[mid].compareTo(value);

if (result == 0) {

return mid; //we're done!
} else if (result < 0) {

//recurse on upper half

return recBinarySearch(a, value, mid + 1, high);
} else {

//recurse on bottom half

return recBinarySearch(a, value, low, mid - 1);

Comparable & compareTo

The Comparable interface (Comparable<T>) is part of the
java.lang (not structure5) package.

Other Java-provided structures can take advantage of objects
that implement Comparable

e See the Arrays class in java.util

e Example JavaArraysBinSearch

Users of Comparable are urged to ensure that compareTo()
and equals() are consistent. That is,

e x.compareTo(y) == 0 exactly when x.equals(y) == true

Note that Comparable limits user to a single ordering
The syntax can get kind of dense

e See BinSearchComparable.java : a generic binary search method
* And even more cumbersome....

ComparableAssociation

e Suppose we want an ordered Dictionary, so that we can use binary
search instead of linear

e Structure5 provides a ComparableAssociation class that
implements Comparable.

e The class declaration for ComparableAssociation is
...wait for it...
public class ComparableAssociation<K extends Comparable<K>, V>
Extends Association<K,V> implements
Comparable<ComparableAssociation<K,V>>
(Yikes!)
e Example: Since Integer implements Comparable, we can write

e ComparableAssociation<Integer, String> myAssoc =
new ComparableAssociation(new Integer(567), “Bob”);

* We could then use Arrays.sort on an array of these

Comparators

* Limitations with Comparable interface?
e Comparable permits 1 order between objects

* What if compareTo() isn’t the desired ordering?
* What if Comparable isn’t implemented?

* Solution: Comparators

Comparators (Ch 6.8)

* A comparator is an object that contains a method that
is capable of comparing two objects

e Sorting methods can be written to apply a Comparator
to two objects when a comparison is to be performed

e Different comparators can be applied to the same data
to sort in different orders or on different keys

public interface Comparator <E> {
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by
// whether a is less than, equal to, or greater than b
public int compare(E a, E b);

Example

Note that Patient does

class Patient ({ not implement
protected int age; Comeparable or
protected String name; Comparator!
public Patient (String n, int a) { name = n; age = a; }
public String getName() { return name; }

public int getAge() { return age; }

class NameComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {
return a.getName().compareTo(b.getName());

}

// Note: No constructor; a “do-nothing” constructor is added by Java

public void <T> sort(T a[], Comparator<T> c) {

if (c.compare(a[i], a[max]) > 0) {..}

sort(patients, new NameComparator()); | 4

Selection Sort with Comparator

public static <E> int findPosOfMax(E[] a, int last,

Comparator<iE> c) {
int maxPos = 0 // A wild guess
for(int 1 = 1; 1 <= last; 1i++)

if (c.compare(a[maxPos], a[i1]) < 0)

maxPos = 1i;
return maxPos;
}
public static <E> void selectionSort(E[] a, Comparator<iE> c) {
for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, 1, big);
}
}

* The same array can be sorted in multiple ways by passing different
Comparator<E> values to the sort method; 15

Comparable vs Comparator

e Comparable Interface for class X
e Permits just one order between objects of class X
e Class X must implement a compareTo method
e Changing order requires rewriting compareTo
* And then recompiling class X
e Comparator Interface
e Allows creation of “compator classes” for class X
e Class X isn’t changed or recompiled

* Multiple Comparators for X can be developed
e Ex: Sort Strings by length (alphabetically for same-length)

* Ex: Sort names by last name instead of first name 16

