CSCI 136
Data Structures &
Advanced Programming

|terators

Iterators : Dispensing Data

lterators

* |terators

* The problem: Efficient and uniform dispensing of
values from data structures
 The solution: The Iterator interface
* Iterators as dispensers
* |terators as generators
e [terators as filters
e |terators that iterate over other lterators ?!
* Yep, it's a thing
* |terators and for loops: The lterable interface
e Allows use of iterators with for-each

Visiting Data from a Structure

* Write a method (count) that counts the

number of times a particular Object appears
In a structure

public int count(List data, E o) {
int count = 0;
for (int i=0; i<data.size(); i++) {
E obj = data.get(1i);
if (obj.equals(o)) count++;
}

return count;

}
e Does this work on all structures (that we
have studied so far)?

Problems

e get(int) not defined on Linear structures (i.e.,
stacks and queues)

 get(int)is “slow on some structures
 O(n) on SLL (and DLL)
 count() = O(n?) for linked lists

* How do we traverse data in structures in a
general, efficient way!?

e Goal: data structure-specific for efficiency

* Goal: use same interface to make general

Recall : Structure Operations

size()
1sEmpty ()
add ()
remove ()
clear()
contains|()

But also

e Method for efficient data traversal
e iterator ()

lterators

e Iterators provide support for efficiently visiting all
elements of a data structure

* Provides common methods to dispense values for

* Traversal of elements : lteration
* Production of values : Generation
e Selection of values : Filtering

e Abstracts away details of how to access elements
* Customizes implementation based on structure

public interface Iterator<iE> {

boolean hasNext() — are there more elements in iteration?
E next() — return next element
default void remove() — removes most recently returned value

e Default : Java provides an implementation for remove
e |t throws an UnsupportedOperationException exception
* Even the Java folks are hesitant to remove from a structure during iteration!

lterators as Generators

e Simple Example: FibonacciNumbers

public class FibonacciNumbers implements Iterator<Integer> {
private int next= 1, current = 1;
private int length= 10; // Default

public FibonacciNumbers() {}
public FibonacciNumbers(int n) {length= n;}
public boolean hasNext() { return length>=0;}
public Integer next() {

length--;

int temp = current;

current = next;

next = temp + current;

return temp;

Why Is This Cool? (it is)

e We could calculate the it Fibonacci number
each time, but that would be slow

e Observation: to find the n Fib number, we
calculate the previous n-1 Fib numbers...

* But by storing some state, we can easily generate
the next Fib number in O(I) time

* Knowledge about the structure of the
problem helps us traverse the Fib space
efficiently one element at a time

e Let’s do the same for data structures

Iterating Over Structures

Goal: Have a data structure produce an iterator that
return the values of the structure in some order.

How!?

* Define an iterator class for the structure, e.g.

public class VectorIterator<ge>
implements Iterator<g>;

public class SinglyLinkedListIterator<gE>
implements Iterator<g>;

* Provide a method in the data structure that

returns an iterator
public Iterator<E> iterator(){ .. }

Iterator Example : Counting

public int count (List<E> data, E o) {
int count = 0;
Iterator<E> iter = data.iterator();
while (iter.hasNext())
if(o.equals(iter.next())) count++;
return count;

}
// Or...

public int count (List<E> data, E o) {
int count = 0;
for(Iterator<E> i1 = data.iterator();
i.hasNext();)
if(o.equals(i.next())) count++;
return count;

Iterating Over Structures

Why provide a method in the data structure that
returns an iterator?

Why not just pass the data structure to the
constructor for the iterator?! E.g.

public SLLIterator<E>(SLL<E> v) {
// code to construct the iterator

}

From with the data structure, we can access the
instance variables of the structure so the we pass
access to those variables to the iterator

e We'll see other benefits soon

Iterating Over Structures

The details of hasNext() and next() often depend on
the specific data structure, e.g.

 SinglyLinkedListlterator holds
* a reference to the head of the list
* A reference to the next node whose value to return

But not always...

* Vectorlterator holds a reference to the Vector and
index of next element

Note: The lterator class for a structure often has
privileged access to the implementation of the structure.

Technical Detail : Abstractlterators

We use both the Iterator (java.util) interface and the
Abstractlterator (structureb) class

All concrete iterator implementations in structure5
extend Abstractlterator
e Abstractlterator partially implements lterator

e [Aside: Very partially]

Importantly, Abstractlterator adds two methods
» get() — peek at (but don’t take) next element, and

* reset() — reinitialize iterator for reuse

Methods are specialized for specific data structures

Abstractlterator Use : Counting

Using an Abstractlterator allows more flexible coding
(but requiring a cast to Abstractlterator)

Note: Can now write a ‘standard’ 3-part for statement

// Only works if data.iterator() returns
// an AbstractIterator!

public int count (List<E> data, E o) {
int count = 0;
for (AbstractIterator<gE> i =
(AbstractIterator<E>) data.iterator();
i.hasNext(); i.next())
if(o.equals(i.get())) count++;
return count;

Implementation : SLLIterator

public class SinglyLinkedListIterator<E> extends AbstractIterator<iE> {
protected Node<E> head, current;

public SinglyLinkedListIterator (Node<E> head) {
this.head = head;
reset();

}

public void reset() { current = head;}

public E next() {
E value = current.value();
current = current.next();
return value;

}
public boolean hasNext() { return current != null; }
public E get() { return current.value(); }

In SinglyLinkedList.java:

public Iterator<E> iterator() {
return new SinglyLinkedListIterator<E>(head);

}

More lterator Examples

e Structure5 provides an Arraylterator

* |t will iterate over the entire array or any slice

* How do we implement a StackArraylterator?
* Do we go from bottom to top, or top to bottom?

* Doesn’t matter! We just need to be consistent...
e Structure5 is not consistent!

e StackArraylterator starts at bottom, StackListlterator at top!

* We can also make iterators that filter the output of
other iterators

o Skiplterator.java : skips over a given value

e Reverselterator.java : Dispenses elements in the reverse
order given by another iterator

e EvenFib.java : Only produce even Fibonacci numbers

Skiplterator

Problem: How can we filter out unwanted
elements from an iterator lter?

Solution: Create another iterator that takes lter
as a parameter its constructor and uses that the
methods of Iter (with some extra steps)

* The Skiplterator will ensure that the next
element that Iter would dispense is not the
one we want to skip over!

Skiplterator

[/ An iterator that filters out a value from another iterator
public class Skiplterator<E> extends Abstractlterator<t> {

protected Abstractlterator<k> elems;
E value;

public Skiplterator(lterator<E> iter, E skipMe) {
elems = (Abstractlterator<k>) iter;
value = skipMe;
reset();

}

public E get() { return elems.get(); }

public boolean hasNext() { return elems.hasNext(); }

Skiplterator

public void reset() {
elems.reset();
skip();

}

public E next() {
E returnVal = elems.next();

skip();
return returnVal;

}

private void skip() {
while(elems.hasNext() && elems.get().equals(value))
elems.next();

}

lterator Hack : Reverselterator

Problem: How can dispense the elements from
an iterator lter in the opposite order from which
Iter would dispense them!?

Solution: Create another iterator that
* Creates a SinglyLinkedList secretSLL
* Fills it with the elements dispensed by Iter

e But stores them in reverse order

e Asks secretSLL for an iterator to itself

* Uses that iterator for dispensing values

Reverselterator

// An iterator that reverses the order of elements
// returned from another iterator.

class Reverselterator<E> extends Abstractlterator<t> {
protected Abstractlterator<k> elems;
public Reverselterator(lterator<k> iter) {
SinglyLinkedList<E> list = new SinglyLinkedList<E>();
while (iter.hasNext()) {

list.addFirst(iter.next());
}

elems = (Abstractlterator<E>)list.iterator();

}

Reverselterator

I/ All other methods dispatch to the underlying iterator.
public boolean hasNext() { return elems.hasNext(); }
public void reset() { elems.reset(); }
public E next() { return elems.next(); }

public E get() { return elems.get(); }

lterators and For-Each

Recall: with arrays, we can use a simplified form of the for loop

for(E elt : arr) {System.out.println(elt);}

Or, for example

// return number of times o appears in data
public int count (List<E> data, E o) {
int count = 0;
for(E current : data)
if(o.equals(current)) count++;
return count;

Why did that work?!
List provides an iterator() method and...

The Iterable Interface

We can use the “for-each” construct...
for(E elt : boxOfStuff) { ... }

...as long as boxOfStuff implements the lterable interface

public interface Iterable<T>
public Iterator<T> iterator();

Duane’s Structure interface extends lterable, so we can use it;

public int count (List<E> data, E o) {
int count = 0;
for(E current : data)
if(o.equals(current)) count++;
return count;

General Rules for lterators

|. Understand order of data structure
2. Always call hasNext() before calling next()!!!

3. Use remove with caution!

. [Opinion: Don’t use remove....]

4. Take care when adding to structure while iterating

 Take away messages:

e Iterator objects capture state of traversal
* They have access to internal data representations

* They should be fast and easy to use

