
CSCI 136
Data Structures &

Advanced Programming

Huffman Codes

Algorithm Design
Huffman Codes

(a CS 256 Preview)

Encoding Text
American Standard Code for Information Interchange.

(courtesy of https://wikimedia.org)

Encoding Text
Extended (8-bit) ASCII

(courtesy of https://knowthecode.io)

Binary Encodings
• Normally, use ASCII: 1 character = 8 bits (1 byte)

• Allows for 28 = 256 different characters

• Space to store “AN_ANTARCTIC_PENGUIN”
• 20 characters -> 20*8 bits = 160 bits

• Is there a better way?
• Only 11 symbols are used (ACEGINPRTU_)
• Only need 4 bits per symbol (since 24>11)!

• 20*4 = 80 bits instead of 160!

Can we do better?

A C E G I N P R T U _
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010

Variable-Length Encodings

• Example
• AN_ANTARCTIC_PENGUIN
• Compute letter frequencies

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

• Key Idea: Use fewer bits for most common letters

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

Features of Good Encoding

• Letters with lower frequency have longer
encodings

• Prefix property: No encoding is a prefix of
another encoding

• All optimal length unambiguous encodings
have these features

Variable-Length Encodings

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

• Uses 67 bits to encode entire string

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

100 010 1100 1101 011 101 0001 0000 001 1110 1111

• Uses 67 bits to encode entire string

• Can we do better?

The Encoding Tree

0

0

0

0

0

0

00

0 0

11 1

1

1 1 1

1

1

1

A C E G I N P R T U _
3 2 1 1 2 4 1 1 2 1 2

110 111 1011 1000 000 001 1001 1010 0101 0100 011

Features of Good Encoding

• Leaves with lower frequency have greater
depth

• Prefix property: No encoding is a prefix of
another encoding (letters only appear at leaves)

• No internal node has a single child

• All optimal length unambiguous encodings have
these features

• They are called Huffman encodings

Huffman Encoding

• Input: symbols of alphabet with frequencies
• Huffman encode as follows
• Create a single-node tree for each symbol: key is

frequency; value is letter
• while there is more than one tree

• Find two trees T1 and T2 with lowest keys
• Merge them into new tree T with key= T1.key+ T2.key

– value of internal node can be anything

• Theorem: The tree computed by Huffman is
an optimal encoding for given frequencies

How To Implement Huffman

• Keep a Vector of Binary Trees
• Sort them by decreasing frequency
• Removing two smallest frequency trees is fast

• Insert merged tree into correct sorted
location in Vector

• Running Time:
• O(n log n) for initial sorting
• O(n2) for rest: O(n) re-insertions of merged trees

• Can we do better...?

What Huffman Encoder Needs

• A structure S to hold items with priorities

• S should support operations
• add(E item); // add an item
• E removeMin(); // remove min priority item

• S should be designed to make these two
operations fast

• If, say, they both ran in O(log n) time, the
Huffman algorithm would take O(n log n) time
instead of O(n2)!

• Next time: Designing such a structure!

