CSCI 136
Data Structures &
Advanced Programming

“Heapifying” an Array



Video Outline

* Heaps
* Quick review of implementation strategies

e Creating heaps from unsorted arrays
e A top-down approach
e A bottom-up approach
e Some analysis + proofs



VectorHeap Design: Recap

* A heap is a semi-sorted tree

e Rather than a “global” sort ordering, “partial”
ordering is maintained for all root-to-leaf paths

e Data stored directly in an implicit binary tree
e Children of i areat 2i+1 and 2i+2
e Parentisat (i-1)/2

* Tree is always complete

* A prefix of the Vector is always occupied—no gaps



VectorHeap Operations: Recap

e Strategy: perform tree modifications that always
preserve tree completeness, but may violate heap
property. Then fix.

e Add/remove never create gaps in between array elements

* We always add in next available array slot (left-most available spot in
binary tree)

* We always remove using “final”’ leaf (rightmost element in array)
* When elements are added and removed, do small amount of
work to “re-heapify”

e pushDownRoot(): recursively swaps large element down the tree
e percolateUp(): recursively swaps small element up the tree



Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a
valid heap, and you want to “heapify” V

* Method I: Top-Down
e Given V[ 0. ..k] satisfies the heap property
e Call percolateUp on item in location k+1

* Now, V[ 0. .k+1] satisfies the heap property!

Grow valid heap region one element at a time



Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);

a=1[759125 4] ‘S:::Z
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Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);
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Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);

D~
N O1 O
O O O
=
N NN DN
o O On
(¥ Y ST Y
AN

~




Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);
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Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);
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Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);
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Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);
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Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);
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Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a
valid heap, and you want to “heapify” V

* Method Il: Bottom-up
 Given V[ k. .n] satisfies the heap property
e Call pushDown on item in location k-1

* Now, V[k-1..n] satisfies heap property!

Grow valid heap region one element at a time



int a[7] = {7,5,9,1,2,5,4};
for (int i1 = a.length-1; 1 > 0;

pushDownRoot(a, 1);

a

Practice Bottom-up
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Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; 1 > 0; i--)
pushDownRoot (a, i);
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Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; 1 > 0; i--)
pushDownRoot (a, i);

(O]

[RERR
G IS, BN E,
O WV ©
_ =
N NN
N NS
N\
/

‘ Ol
ul




Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; 1 > 0; i--)
pushDownRoot (a, i);
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Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; 1 > 0; i--)
pushDownRoot (a, i);
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Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; 1 > 0; i--)
pushDownRoot (a, i);
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Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--
pushDownRoot (a, i);
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Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; 1 > 0; i--)
pushDownRoot (a, i);
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Let’s Compare

* Which is faster: Top down or Bottom Up?

e Q: Think about a complete binary tree. Where do
most of the nodes live?

e A: The leaves!

 Given that most of the nodes are leaves, should
we percolateUp or pushDown!

* To answer this, we should think about “how far” we
need to move a node in the worst case.



Some Sums (for your toolbox)

Z 9d — gn+l _ All of these can be
proven by (weak)
Induction.

SH

+1)
r (r—1) Try these proofs to
hone your skills!

dy _ (o1 n+1 (The second sum
(d)(27) = (n—1)(2"7) +2 IS called a

geometric series. It
works for any r#0)
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Top-Down vs Bottom-Up

e Top-down heapify (percolate up): elements at
depth d may be swapped d times.

* The total # of swaps is:
N (recall: h =log n)
z d2¢ = (h—1)2"*1 = (logn — 1)2n + 2
d=1
e ThisisO(n log,n)

e Some intuition: most of the elements are in the lowest levels
of the tree, so each of them might have to move to root:
O(log,n) swaps per element



Top-Down vs Bottom-Up

* Bottom-up heapify (push down): elements at depth
d may be swapped h-d times.

* The total # of swaps is:
n (recall: h =log n)
2 (h—d)2¢ =2"M1 —2p -2
d=1
= 2n — 2logn — 2
e This is O(n) — it beats top-down!

e Some intuition: most of the elements are in the lowest levels
of the tree, so each of them will only be pushed down

(swapped) a small number of times SO cooLM



Summary

* There are multiple valid ways to create a heap
from an unsorted array

* The choices we make impact performance, so

think carefully about the problem structure
when developing your approach

* The same arguments apply to min-heaps and
max-heaps: just inverse the swapping
condition.



