
CSCI 136
Data Structures &

Advanced Programming

“Heapifying” an Array



Video Outline

• Heaps
• Quick review of implementation strategies
• Creating heaps from unsorted arrays

• A top-down approach
• A bottom-up approach
• Some analysis + proofs



VectorHeap Design: Recap

• A heap is a semi-sorted tree
• Rather than a “global” sort ordering, “partial” 

ordering is maintained for all root-to-leaf paths

• Data stored directly in an implicit binary tree
• Children of i are at 2i+1 and 2i+2
• Parent is at (i-1)/2

• Tree is always complete
• A prefix of the Vector is always occupied–no gaps 



VectorHeap Operations: Recap

• Strategy: perform tree modifications that always 
preserve tree completeness, but may violate heap 
property. Then fix.
• Add/remove never create gaps in between array elements

• We always add in next available array slot (left-most available spot in 
binary tree)

• We always remove using “final” leaf (rightmost element in array)

• When elements are added and removed, do small amount of 
work to “re-heapify”
• pushDownRoot(): recursively swaps large element down the tree
• percolateUp(): recursively swaps small element up the tree



Heapifying A Vector (or array)
Problem: You are given a Vector V that is not a 
valid heap, and you want to “heapify” V
• Method I: Top-Down
• Given V[0...k] satisfies the heap property

• Call percolateUp on item in location k+1
• Now, V[0..k+1] satisfies the heap property!

Grow valid heap region one element at a time



Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
0 1 2 3 4 5 6

7

5 9

1 2 5 4



Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]

0 1 2 3 4 5 6
7

5 9

1 2 5 4



Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[5 7 9 1 2 5 4]

0 1 2 3 4 5 6
5

7 9

1 2 5 4



Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[5 7 9 1 2 5 4]
[5 7 9 1 2 5 4]

0 1 2 3 4 5 6
5

7 9

1 2 5 4



Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[5 7 9 1 2 5 4]
[5 7 9 1 2 5 4]
[1 5 9 7 2 5 4]

0 1 2 3 4 5 6
1

5 9

7 2 5 4



Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[5 7 9 1 2 5 4]
[5 7 9 1 2 5 4]
[1 5 9 7 2 5 4]
[1 2 9 7 5 5 4]

0 1 2 3 4 5 6
1

2 9

7 5 5 4



Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[5 7 9 1 2 5 4]
[5 7 9 1 2 5 4]
[1 5 9 7 2 5 4]
[1 2 9 7 5 5 4]
[1 2 5 7 5 9 4]

0 1 2 3 4 5 6
1

2 5

7 5 9 4



Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[5 7 9 1 2 5 4]
[5 7 9 1 2 5 4]
[1 5 9 7 2 5 4]
[1 2 9 7 5 5 4]
[1 2 5 7 5 9 4]
[1 2 4 7 5 9 5]

0 1 2 3 4 5 6
1

2 4

7 5 9 5



Heapifying A Vector (or array)
Problem: You are given a Vector V that is not a 
valid heap, and you want to “heapify” V
• Method II: Bottom-up
• Given V[k..n] satisfies the heap property

• Call pushDown on item in location k-1
• Now, V[k-1..n] satisfies heap property!

Grow valid heap region one element at a time



Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
0 1 2 3 4 5 6

7

5 9

1 2 5 4



Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]

0 1 2 3 4 5 6
7

5 9

1 2 5 4



Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]

0 1 2 3 4 5 6
7

5 9

1 2 5 4



Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]

0 1 2 3 4 5 6
7

5 9

1 2 5 4



Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]

0 1 2 3 4 5 6
7

5 9

1 2 5 4



Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 4 1 2 5 9]

0 1 2 3 4 5 6
7

5 4

1 2 5 9



Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 4 1 2 5 9]
[7 1 4 5 2 5 9]

0 1 2 3 4 5 6
7

1 4

5 2 5 9



Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 4 1 2 5 9]
[7 1 4 5 2 5 9]
[1 2 4 7 5 5 9]

0 1 2 3 4 5 6
1

2 4

7 5 5 9



Let’s Compare

• Which is faster: Top down or Bottom Up?
• Q: Think about a complete binary tree. Where do 

most of the nodes live?
• A: The leaves!
• Given that most of the nodes are leaves, should 

we percolateUp or pushDown?
• To answer this, we should think about “how far” we 

need to move a node in the worst case.



Some Sums (for your toolbox)

All of these can be 
proven by (weak) 
induction.

Try these proofs to 
hone your skills!

(The second sum 
is called a 
geometric series. It 
works for any r≠0)



Top-Down vs Bottom-Up

• Top-down heapify (percolate up): elements at 
depth d may be swapped d times.

• The total # of swaps is:

!
"#$

%
&2" = ℎ − 1 2%,$ = log 0 − 1 20 + 2

• This is O(n log2n)
• Some intuition: most of the elements are in the lowest levels 

of the tree, so each of them might have to move to root: 
O(log2n) swaps per element

(recall: h = log n)



Top-Down vs Bottom-Up

• Bottom-up heapify (push down): elements at depth 
d may be swapped h-d times.

• The total # of swaps is:

!
"#$

%
(ℎ − ))2" = 2%-$ − 2ℎ − 2

= 2. − 2log . − 2
• This is O(n) — it beats top-down!

• Some intuition: most of the elements are in the lowest levels 
of the tree, so each of them will only be pushed down 
(swapped) a small number of times SO COOL!!!

(recall: h = log n)



Summary

• There are multiple valid ways to create a heap 
from an unsorted array

• The choices we make impact performance, so 
think carefully about the problem structure 
when developing your approach

• The same arguments apply to min-heaps and 
max-heaps: just inverse the swapping 
condition.


