CSCI 136
Data Structures &
Advanced Programming

“Heapifying” an Array

Video Outline

* Heaps
* Quick review of implementation strategies

e Creating heaps from unsorted arrays
e A top-down approach
e A bottom-up approach
e Some analysis + proofs

VectorHeap Design: Recap

* A heap is a semi-sorted tree

e Rather than a “global” sort ordering, “partial”
ordering is maintained for all root-to-leaf paths

e Data stored directly in an implicit binary tree
e Children of i areat 2i+1 and 2i+2
e Parentisat (i-1)/2

* Tree is always complete

* A prefix of the Vector is always occupied—no gaps

VectorHeap Operations: Recap

e Strategy: perform tree modifications that always
preserve tree completeness, but may violate heap
property. Then fix.

e Add/remove never create gaps in between array elements

* We always add in next available array slot (left-most available spot in
binary tree)

* We always remove using “final”’ leaf (rightmost element in array)
* When elements are added and removed, do small amount of
work to “re-heapify”

e pushDownRoot(): recursively swaps large element down the tree
e percolateUp(): recursively swaps small element up the tree

Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a
valid heap, and you want to “heapify” V

* Method I: Top-Down
e Given V[0. ..k] satisfies the heap property
e Call percolateUp on item in location k+1

* Now, V[0. .k+1] satisfies the heap property!

Grow valid heap region one element at a time

Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);

a=1[759125 4] ‘S:::Z

A NV

Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);

— —
BN
U1 O
O O
= =
N N
Ul U
SN
—_—
<=

Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);

D~
N O1 O
O O O
=
N NN DN
o O On
(¥ Y ST Y
AN

~

Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);

(62 I B IS
< U1 U»

O W WV VO
e
NN NN
o OO OO O

NN NS
\

\

\/

~

O
~J

Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);

a=1[7591254] =
759125 4] 7\
579125 4 5] «.
579125 4
159725 4

Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);

a=1[7591254]
759125 4] /
579125 4] >
579125 4] ,
159725 4 N\ |
129755 4] 2 e

Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);

a=1[7591265 4]
759 125 4] 7\
(5 7 9 1 2 5 4] 2 5 | +~_
5 791 25 4] N\
159 7 25 4] "\ N\
129755 4 I 5 (:::)‘
125 75 9 4°

Practice Top-Down

int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)
percolateUp(a, 1);

a=1[7591254
759125 4 7\
'5 79125 4 5
57 91265 4
159725 4 "\ VAN
129755 4 1 T3 .
1257509 4
1247595

Heapifying A Vector (or array)

Problem: You are given a Vector V that is not a
valid heap, and you want to “heapify” V

* Method Il: Bottom-up
 Given V[k. .n] satisfies the heap property
e Call pushDown on item in location k-1

* Now, V[k-1..n] satisfies heap property!

Grow valid heap region one element at a time

int a[7] = {7,5,9,1,2,5,4};
for (int i1 = a.length-1; 1 > 0;

pushDownRoot(a, 1);

a

Practice Bottom-up

[7 59 125 4]

i--)

Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; 1 > 0; i--)
pushDownRoot (a, i);

— —
SN
Ul »
O ©
—
N N
Ul Ul
S
—
AN
/

Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; 1 > 0; i--)
pushDownRoot (a, i);

(O]

[RERR
G IS, BN E,
O WV ©
_ =
N NN
N NS
N\
/

‘ Ol
ul

Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; 1 > 0; i--)
pushDownRoot (a, i);

(O]

G NG IS I,
O O VO VW
e e
NN NN

N NS

N NN
O[O
=

u

Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; 1 > 0; i--)
pushDownRoot (a, i);

(O]

TS

S PN IS RPN P
G BN, BN BNC, IS,
O WO WV WV LV
e i
NN N NN

‘U‘l

3]

’

O | O
= (&

v 4
‘-——’

Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; 1 > 0; i--)
pushDownRoot (a, i);

[RERERERRS
(G, INC I, IS, INC,
NIV BV BV B Vo)
el e
N (NN NN
G RIS, WS IC INE;
O [D

N\

\/

Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--
pushDownRoot (a, i);

D

)

A—-\

LI I I C, I,
A S “NEEVo I Vo Ve JVe
& I e e e
NN NN NN
oo oo O O

NN N N

O O [[
[
4
’

V4
‘N-—’

Practice Bottom-up

int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; 1 > 0; i--)
pushDownRoot (a, i);

a=10[759125 4]
759125 4 /. \
7591 25 4] >
759125 4
754125 9] "\ /" \
7145259 1 T c
124755 9]

Let’s Compare

* Which is faster: Top down or Bottom Up?

e Q: Think about a complete binary tree. Where do
most of the nodes live?

e A: The leaves!

 Given that most of the nodes are leaves, should
we percolateUp or pushDown!

* To answer this, we should think about “how far” we
need to move a node in the worst case.

Some Sums (for your toolbox)

Z 9d — gn+l _ All of these can be
proven by (weak)
Induction.

SH

+1)
r (r—1) Try these proofs to
hone your skills!

dy _ (o1 n+1 (The second sum
(d)(27) = (n—1)(2"7) +2 IS called a

geometric series. It
works for any r#0)

[]= Il]s

I
[

S

(n—d)(2%) = 2" —2n — 2

I
(Y

Top-Down vs Bottom-Up

e Top-down heapify (percolate up): elements at
depth d may be swapped d times.

* The total # of swaps is:
N (recall: h =log n)
z d2¢ = (h—1)2"*1 = (logn — 1)2n + 2
d=1
e ThisisO(n log,n)

e Some intuition: most of the elements are in the lowest levels
of the tree, so each of them might have to move to root:
O(log,n) swaps per element

Top-Down vs Bottom-Up

* Bottom-up heapify (push down): elements at depth
d may be swapped h-d times.

* The total # of swaps is:
n (recall: h =log n)
2 (h—d)2¢ =2"M1 —2p -2
d=1
= 2n — 2logn — 2
e This is O(n) — it beats top-down!

e Some intuition: most of the elements are in the lowest levels
of the tree, so each of them will only be pushed down

(swapped) a small number of times SO cooLM

Summary

* There are multiple valid ways to create a heap
from an unsorted array

* The choices we make impact performance, so

think carefully about the problem structure
when developing your approach

* The same arguments apply to min-heaps and
max-heaps: just inverse the swapping
condition.

