CSCI 136
 Data Structures \&
 Advanced Programming

Introduction to Graphs

Graphs: Our Final Frontier

- Graphs as Mathematical Models
- Basic Terminology
- Important Structural Features
- Algorithms on Graphs
- Graph Data Structures
- Undirected Graphs
- Directed Graphs
- More Graph Algorithms

Basic Definitions \& Concepts

An undirected graph

A directed graph

Graphs Describe the World

- Transportation Networks
- Communication Networks
- Molecular structures
- Dependency structures
- Scheduling
- Matching
- Graphics Modeling

Nodes = subway stops; Edges = track between stops

Nodes $=$ cities; Edges $=$ rail lines connecting cities

Note: Connections in graph matter, not precise locations of nodes

Internet (~1972)

Internet (~1998)

Word Game

CS Pre-requisite Structure (subset)

Nodes $=$ courses; Edges $=$ prerequisites $* * *$

Wire-Frame Models

Priority Queue

Trie

Basic Definitions \& Concepts

Definition:
An undirected graph $G=(V, E)$ consists of two sets

- V : the vertices of G
- E : the edges of G

Each edge e in E is defined by a set of two vertices: its incident vertices

- We write $e=\{u, v\}$ and say that u and v are adjacent

Walking Around A Graph

Def'n: A walk from u to v in a graph $G=(\mathrm{V}, \mathrm{E})$ is an alternating sequence of vertices and edges
$u=v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{k-1}, e_{k}, v_{k}=v$
such that each $e_{i}=\left\{v_{i-1}, v_{i}\right\}$ for $\mathrm{i}=\mathrm{I}, \ldots, \mathrm{k}$

- Note: A walk starts and ends with a vertex
$B-A-G-F-C-B-A-H$

Walking Around A Graph

Def'n: A path from u to v in a graph $G=(V, E)$ is a walk that does not use any edge more than once

Def'n: A simple path is a path that does not use any vertex more than once

$$
B-A-G-F-C-A-H
$$

More Definitions : Walking In Circles

- A closed walk in a graph $G=(V, E)$ is a walk

$$
v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}
$$

such that each $v_{0}=v_{k}$

- A circuit is a path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ - No repeated edges
- A cycle is a simple path where $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$ - No repeated vertices (uhm, except for v_{0} !)
- The length of any of these is the number of edges in the sequence

Little Tiny Theorems

- If there is a walk from u to v, then there is a walk from v to u.
- If there is a walk from u to v, then there is a path from u to v (and from v to u)
- If there is a path from u to v, then there is a simple path from u to v (and v to u)
- Every circuit through v contains a cycle through v
- Not every closed walk through v contains a cycle through v ! [Try to find an example!]

Little Tiny Theorems

If there is a walk from u to v, then there is a walk from v to u.

Proof

- A walk from u to v is a sequence an alternating sequence of vertices and edges

$$
u=v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{k-l}, e_{k}, v_{k}=v
$$

- such that each $e_{i}=\left\{v_{i-1}, v_{i}\right\}$ for $i=l, \ldots, k$
- But then $v=v_{k}, e_{k}, v_{k-1}, e_{k-1}, \ldots, v_{1}, e_{1}, v_{0}=u$ is a walk from v to u.

Little Tiny Theorems

If there is a path from u to v , then there is a simple path from u to v.

Idea:

Little Tiny Theorems

Proof:

- Let $u=v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{k-1}, e_{k}, v_{k}=v$ be a path from u to v (no edge appears twice)
- Suppose some v_{i} appears twice: that is, for some $j>i$, $v_{j}=v_{i}$. Then $e_{i+1}=\left\{v_{i}, v_{i+1}\right\}$ and $e_{j}=\left\{v_{j-1}, v_{j}\right\}$
- But $v_{j}=v_{i}$, so $e_{j}=\left\{v_{j-1}, v_{i}\right\}$ and so we can remove

$$
e_{i+1}, v_{i+1}, e_{i+1}, \ldots, v_{j-1}, e_{j}
$$

- from the original path obtaining the shorter path

$$
u=v_{0}, e_{1}, v_{1}, \ldots, v_{k-1}, e_{i}, v_{i}=v_{j}, e_{j+1}, v_{j}, \ldots, e_{k}, v_{k}=v
$$

- Repeat until no duplicate vertices remain.

Another Useful Graph Fact

- If $e=\{u, v\}$ we say e is incident to u (and to v)
- The degree of v is the number of edges incident to v
- Denoted by $\operatorname{deg}(v)$
- Thm: For any graph $G=(V, E): \sum_{v \in V} \operatorname{deg}(v)=2|E|$ where $|E|$ is the number of edges in G
- Proof Hint: Induction on $|E|$: How does removing an edge change the equation?
- Or: Count pairs (v, e) where v is incident with e

Reachability and Connectedness

- Defn: A vertex v in G is reachable from a vertex u in G if there is a path from u to v
- Note: v is reachable from u if and only if u is reachable from v
- Defn: An undirected graph G is connected if for every pair of vertices u, v in G, v is reachable from u (and, of course, u from v)
- The set of all vertices reachable from \mathbf{v}, along with all edges of G connecting any two of them, is called the connected component of v

Reachability and Connectedness

(M)

- 3 components
- A, B, C, D, E, F, G, H are all reachable from one another
- As are I, J, K, L
- M can reach only itself

Distance in Undirected Graphs

Defn: The distance between two vertices u and v in an undirected graph $G=(V, E)$ is the minimum of the path lengths over all u-v paths.
We write $d(u, v)$

Distance in Undirected Graphs

$d(H, E) \leq d(H, C)+d(C, E)$
$\leq 2+2=4$
In fact, $d(H, E)=1$

Distance satisfies

- $d(u, u)=0$, for all $u \in V$
- $d(u, v)=d(v, u)$, for all $u, v \in V$
- $d(u, v) \leq d(u, w)+d(w, v)$, for all $u, v, w \in V$

This last property is called the triangle inequality

Algorithms on Graphs

- What are the basic operations we need to describe algorithms on graphs?
- Given vertices u and v : are they adjacent?
- Given vertex v and edge e, are they incident?
- Given an edge e, get its incident vertices (ends)
- How many vertices are adjacent to v ? (degree of v)
- The vertices adjacent to v are called its neighbors
- Get a list of the vertices adjacent to v
- From which we can get the edges incident with v

Basic Graph Algorithms

- We'll look at a number of graph algorithms
- Connectedness: Is G connected?
- If not, how many connected components does G have?
- Cycle testing: Does G contain a cycle?
- Does G contain a cycle through a given vertex?
- If the edges of G have costs:
- What is the cheapest connected subgraph of G that contains every vertex?
- What is a cheapest path from u to v ?
- And more....

Testing Connectedness

- How can we determine whether G is connected?
- Pick a vertex v ; see if every vertex u is reachable from v
- How could we do this?
- Visit the neighbors of v, then visit their neighbors, etc. See if you reach all vertices
- Assume we can mark a vertex as "visited"
- How do we efficiently manage all this visiting?

Reachability: Breadth-First Search

BFS $(G, v) \quad / /$ Do a breadth-first search of G starting at v // pre: all vertices are marked as unvisited count $\leftarrow O$;
Create empty queue Q; enqueue v; mark v as visited; count++ While Q isn't empty
current \leftarrow Q.dequeue(); for each unvisited neighbor u of current :

$$
\text { add u to } Q \text {; mark u as visited; count }{ }^{++}
$$

return count;

Now compare value returned from BFS(G,v) to size of V

BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u reachable from v.

Proof: We'll show that if u is reachable from v then $\operatorname{BFS}(G, v)$ visits u by induction on $d=d(v, u)$

- Base Case: $d=0$. Then $u=v$.
- v is reachable from v and $\operatorname{BFS}(G, v)$ visits v
- Induction Hypothesis: For some $d \geq 0$, if $d(u, v)$
$=\mathrm{d}$ then $\operatorname{BFS}(\mathrm{G}, \mathrm{v})$ visits u .

BFS Theorem

- Induction Step: Assume now that $\mathrm{d}(\mathrm{u}, \mathrm{v})=\mathrm{d}+\mathrm{l}$
- Let $v=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{d}, e_{d+1}, v_{d+1}=u$ be a path of length $\mathrm{d}+\mathrm{l}$ from v to u
- Then $v=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{d}$ is a path of length d from v to v_{d}
- By I.H., v_{d} is visited by $\operatorname{BFS}(\mathrm{G}, \mathrm{v})$ and put in Q
- So v_{d} will be dequeued and all of its unvisited neighbors, including u, will be marked as visited
A similar argument shows that if u is visited by $\operatorname{BFS}(G, v)$ then u is reachable from v

BFS Reflections

- The BFS algorithm traced out a tree T_{v} : the edges connecting a visited vertex to (as yet) unvisited neighbors
- T_{v} is called a BFS tree of G with root v (or from v)
- The vertices of T_{v} are visited in level-order
- Every path in T_{v} from v to a vertex u is a shortest possible path from v to u
- That is, the path has length $\mathrm{d}(\mathrm{v}, \mathrm{u})$

BFS Reflections : Example

Assuming neighbors are visited alphabetically

Summary and Observations

- An undirected graph models a symmetric relationship between entities (vertices)
- Local features of the graph (e.g. : neighbors) can be used to determine global features of the graph (e.g. : distance, connectedness, ...)
- Graph algorithms often explore the graph by following sequences of edges (paths)
- An enormous range of problems can be modeled as graph problems

