CSCI 136 Data Structures & Advanced Programming

Introduction to Graphs

Graphs : Our Final Frontier

- Graphs as Mathematical Models
 - Basic Terminology
 - Important Structural Features
- Algorithms on Graphs
- Graph Data Structures
 - Undirected Graphs
 - Directed Graphs
- More Graph Algorithms

Basic Definitions & Concepts

An undirected graph

A directed graph

Graphs Describe the World

- Transportation Networks
- Communication Networks
- Molecular structures
- Dependency structures
- Scheduling
- Matching
- Graphics Modeling

Nodes = subway stops; Edges = track between stops

Nodes = cities; Edges = rail lines connecting cities

Note: Connections in graph matter, not precise locations of nodes

Internet (~1998)

Word Game

CS Pre-requisite Structure (subset)

Nodes = courses; Edges = prerequisites ***

Wire-Frame Models

Priority Queue

Basic Definitions & Concepts

Definition:

An undirected graph G = (V, E) consists of two sets

- V : the vertices of G
- E : the edges of G

Each edge e in E is defined by a set of two vertices: its *incident* vertices

 We write e = {u,v} and say that u and v are *adjacent*

Walking Around A Graph

<u>Def'n:</u> A walk from u to v in a graph G = (V,E) is an alternating sequence of vertices and edges

 $u = v_0, e_1, v_1, e_2, \dots, v_{k-1}, e_k, v_k = v$

such that each $e_i = \{v_{i-1}, v_i\}$ for i = 1, ..., k

 Note: A walk starts and ends with a vertex

B - A - G - F - C - B - A - H

Walking Around A Graph

<u>Def'n</u>: A path from u to v in a graph G = (V,E) is a walk that does not use any edge more than once

<u>Def'n</u>: A simple path is a path that does not use any vertex more than once

B - A - G - F - C - A - H

More Definitions : Walking In Circles

• A closed walk in a graph G = (V,E) is a <u>walk</u>

$$v_0, e_1, v_1, e_2, v_2, \dots, v_{k-1}, e_k, v_k$$

such that each $v_0 = v_k$

- A circuit is a <u>path</u> where v₀ = v_k
 No repeated edges
- A cycle is a simple path where v₀ = v_k
 No repeated vertices (uhm, except for v₀!)
- The length of any of these is the number of edges in the sequence

- If there is a walk from u to v, then there is a walk from v to u.
- If there is a *walk* from u to v, then there is a *path* from u to v (and from v to u)
- If there is a path from u to v, then there is a simple path from u to v (and v to u)
- Every circuit through v contains a cycle through v
- Not every closed walk through v contains a cycle through v! [Try to find an example!]

If there is a walk from u to v, then there is a walk from v to u.

Proof

 A walk from u to v is a sequence an alternating sequence of vertices and edges

 $u = v_0, e_1, v_1, e_2, ..., v_{k-1}, e_k, v_k = v$

- such that each $e_i = \{v_{i-1}, v_i\}$ for i = 1, ..., k
- But then v = v_k, e_k, v_{k-1}, e_{k-1}, ..., v₁, e₁, v₀ = u is a walk from v to u.

If there is a *path* from u to v, then there is a *simple path* from u to v.

Idea:

Proof:

- Let u = v₀, e₁, v₁, e₂, ..., v_{k-1}, e_k, v_k = v be a path from u to v (no edge appears twice)
- Suppose some v_i appears twice: that is, for some j > i, $v_j = v_i$. Then $e_{i+1} = \{v_i, v_{i+1}\}$ and $e_j = \{v_{j-1}, v_j\}$
- But $v_j = v_i$, so $e_j = \{v_{j-1}, v_i\}$ and so we can remove

$$e_{i+1}, v_{i+1}, e_{i+1}, \dots, v_{j-1}, e_j$$

• from the original path obtaining the shorter path

 $u = v_0, e_1, v_1, ..., v_{k-1}, e_i, v_i = v_j, e_{j+1}, v_j, ..., e_k, v_k = v$

• Repeat until no duplicate vertices remain.

Another Useful Graph Fact

- If e = {u,v} we say e is incident to u (and to v)
- The degree of v is the number of edges incident to v
 - Denoted by deg(v)
- Thm: For any graph G = (V, E): $\sum_{v \in V} \deg(v) = 2 |E|$ where |E| is the number of edges in G
- Proof Hint: Induction on |E|: How does removing an edge change the equation?
 - Or: Count pairs (v,e) where v is incident with e

Reachability and Connectedness

- <u>Def'n</u>: A vertex v in G is *reachable* from a vertex u in G if there is a path from u to v
- Note: v is reachable from u if and only if u is reachable from v
- <u>Def'n</u>: An undirected graph G is connected if for every pair of vertices u, v in G, v is reachable from u (and, of course, u from v)
- The set of all vertices reachable from v, along with all edges of G connecting any two of them, is called the *connected component of v*

Reachability and Connectedness

- 3 components
- A, B, C, D, E, F, G, H are all reachable from one another
 - As are I, J, K, L
 - M can reach only itself

Distance in Undirected Graphs

d(H,H) = 0

Def'n: The distance between two vertices u and v in an undirected graph G=(V,E) is the minimum of the path lengths over all *u*-v paths. We write d(u,v)

Distance in Undirected Graphs

 $d(H,E) \le d(H,C) + d(C,E)$ $\le 2 + 2 = 4$ In fact, d(H,E) = 1

Distance satisfies

- d(u,u) = 0, for all $u \in V$
- d(u,v) = d(v,u), for all u,v∈V
- $d(u,v) \le d(u,w) + d(w,v)$, for all $u,v,w \in V$

This last property is called the *triangle* inequality

Algorithms on Graphs

- What are the basic operations we need to describe algorithms on graphs?
 - Given vertices u and v: are they adjacent?
 - Given vertex v and edge e, are they incident?
 - Given an edge e, get its incident vertices (ends)
 - How many vertices are adjacent to v? (degree of v)
 - The vertices adjacent to v are called its neighbors
 - Get a list of the vertices *adjacent* to v
 - From which we can get the edges *incident* with v

Basic Graph Algorithms

- We'll look at a number of graph algorithms
 - Connectedness: Is G connected?
 - If not, how many connected components does G have?
 - Cycle testing: Does G contain a cycle?
 - Does G contain a cycle through a given vertex?
 - If the edges of G have costs:
 - What is the cheapest connected subgraph of G that contains every vertex?
 - What is a cheapest path from u to v?
 - And more....

Testing Connectedness

- How can we determine whether G is connected?
 - Pick a vertex v; see if every vertex u is reachable from v
- How could we do this?
 - Visit the neighbors of v, then visit their neighbors, etc. See if you reach all vertices
 - Assume we can mark a vertex as "visited"
- How do we efficiently manage all this visiting?

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v // pre: all vertices are marked as unvisited count $\leftarrow 0$; Create empty queue Q; enqueue v; mark v as visited; count++ While Q isn't empty $current \leftarrow Q.dequeue();$ for each unvisited neighbor u of current: add u to Q; mark u as visited; count++ return count;

Now compare value returned from BFS(G,v) to size of V

BFS Theorem

- Thm. BFS(G,v) visits exactly those vertices u reachable from v.
- Proof: We'll show that if u is reachable from v then BFS(G,v) visits u by induction on d = d(v,u)
- Base Case: d = 0. Then u = v.
 - v is reachable from v and BFS(G,v) visits v
- Induction Hypothesis: For some d ≥ 0, if d(u,v)
 = d then BFS(G,v) visits u.

BFS Theorem

- Induction Step: Assume now that d(u,v) = d+1
 - Let v = v₀, e₁, v₁, e₂, v₂, ..., v_d, e_{d+1}, v_{d+1} = u be a path of length d+1 from v to u
 - Then v = v₀, e₁, v₁, e₂, v₂, ..., v_d is a path of length d from v to v_d
 - By I.H., v_d is visited by BFS(G,v) and put in Q
 - So v_d will be dequeued and all of its unvisited neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by BFS(G,v) then u is reachable from v

BFS Reflections

- The BFS algorithm traced out a tree T_v: the edges connecting a visited vertex to (as yet) unvisited neighbors
- T_v is called a BFS tree of G with root v (or from v)
- The vertices of T_v are visited in level-order
- Every path in T_v from v to a vertex u is a shortest possible path from v to u
 - That is, the path has length d(v,u)

BFS Reflections : Example

Assuming neighbors are visited alphabetically

Summary and Observations

- An undirected graph models a symmetric relationship between *entities* (vertices)
- Local features of the graph (e.g. : neighbors) can be used to determine global features of the graph (e.g. : distance, connectedness, ...)
- Graph algorithms often explore the graph by following sequences of edges (paths)
- An enormous range of problems can be modeled as graph problems