
CSCI 136
Data Structures &

Advanced Programming

Graph Applications:
Minimum Cost Spanning Trees

2

Video Outline

• Spanning subgraphs
• Spanning trees
• Prim’s algorithm to calculate spanning trees

with the minimum cost
• Description
• Proof
• Pseudocode

• Implementation in structure5

3

Graph Definitions

• A subgraph of a graph G=(V, E) is a graph G’=(V’,E’)
where:
• V’ ⊆ V // the set of vertices in the subgraph is a subset
• E’ ⊆ E, // the set of edges in the subgraph is a subset

• If e ∈ E’ where e = {u,v}, then u, v ∈ V’ // edges in the
subgraph connect vertices that are also in the subgraph

• If V’ = V, then G’ is called a spanning subgraph of G
• In other words, a spanning subgraph must contain all the

vertices of the original graph, but it is not required to
contain all of the edges

4

Spanning Trees

• A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges

5

Spanning Trees

• A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges

6

Spanning Trees

• A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges

7

Spanning Trees

Theorem: Every connected graph G=(V,E) contains a
spanning subgraph G’=(V,E’) that is a tree

Proof idea:
• If G’ is not a tree, then it contains some cycle C
• Removing an edge from C leaves G’ connected (why?)
• Repeat this process of removing edges until no more cycles remain

• Now we are left with a tree

8

Minimum Cost Spanning Tree

• If a spanning tree is a subgraph that covers all the
vertices using the minimum number of edges then,

• Suppose we’re given a graph that is:
• connected, and
• has weighted edges (integer, float, double, etc.)

• A minimum cost spanning tree is a spanning tree
where the sum of all the edge weights is the smallest
possible

9

Minimum-Cost Spanning Trees

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

10

Minimum-Cost Spanning Trees

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

11

MCST Applications?

• Suppose Williamstown builds a municipal
broadband network. Let:
• vertices be homes,

• edges be places where cables can be laid (roads?),
• weights be distance (cable priced $/meter)

• If we identify the minimum cost spanning tree,
we can build a network that connects every
home for the minimum cost.

• Thus, finding a MCST is both theoretically and
practically interesting!

12

First Attempt at Finding a MCST

Instead of finding a minimum cost spanning tree,
suppose we just wanted to find to find one that
is “pretty good”

Idea: we could try to grow it greedily!
• Pick a vertex and choose its cheapest incident

edge. Now we have a (small) tree

• Repeatedly add the cheapest edge to our tree that
still keeps it a tree (i.e., connected and no cycles)

• Once every vertex is connected, we have a
spanning tree!

13

Prim’s Algorithm

• The greedy algorithm we just described is
called Prim’s algorithm
• It always find a minimum-cost spanning tree for

any connected graph (even if the weights are
negative)!

• Is this surprising?
• Each step makes the best choice it can in the

moment, but it lacks the “global” state of the
problem.

• Yet the solution is in fact globally optimal. Cool!

14

The Key to Prim’s Algorithm

Def: Sets V1 and V2 form a partition of a set V if

V1 ∪ V2 = V and V1 ∩ V2 = ∅
• In other words, V1 and V2 together contain

all of the vertices in V, but no vertex is in
both V1 and V2.

Lemma: Let G=(V,E) be a connected graph and
let V1 and V2 be a partition of V. Every MCST of
G contains a cheapest edge between V1 and V2

15

Proof Sketch

Lemma: Let G=(V,E) be a connected graph and
let V1 and V2 be a partition of V. Every MCST of
G contains a cheapest edge between V1 and V2

• Let e be a cheapest edge between V1 and V2

• Let T be a MCST of G.
• If e ∉ T, then T ∪ {e} contains a cycle C and e is an edge

of C
• Some other edge e’ of C must also be between V1 and V2;

since e is a cheapest edge, so w(e’) = w(e)
• (If it weren’t, we could replace e with e’ and T’s cost would be

cheaper, but that’s impossible because T was a MCST.)

16

Using The Key to Prove Prim

We’ll assume all edge costs are distinct
(Not necessary but otherwise proof is slightly less elegant)

Let T be a tree produced by the greedy
algorithm, and suppose T* is a MCST for G.
Claim: T = T*
Idea of Proof: Show that every edge added to
the tree T by the greedy algorithm is in T*
Clearly the first edge added to T is in T*

Why? Use the key!

17

Using The Key

Now use induction!
• Suppose that, for some k ≥ 1, the first k edges

added to T are in T*. These form a tree Tk

• Let V1 be the vertices of Tk and let V2 = V-V1

• Now, the greedy algorithm will add to T the
cheapest edge e between V1 and V2

• But any MCST contains the (only!) cheapest
edge between V1 and V2, so e is in T*

• Thus the first k+1 edges of T are in T*

18

Prim’s Algorithm for MCSTs

• Let’s walk through an example to solidify the
algorithm. In this example, not all edge weights are
unique.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

19

Prim’s Algorithm for MCSTs

• Start by picking some vertex

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

20

Prim’s Algorithm for MCSTs

• Start by picking some vertex

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

21

Prim’s Algorithm for MCSTs

• We’ll note our partitions V1 and V2 using green and
orange sets. Select an edge with the cheapest cost
that connects a green vertex to an orange vertex.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

22

Prim’s Algorithm for MCSTs

• We’ll note our partitions V1 and V2 using green and
orange sets. Select an edge with the cheapest cost
that connects a green vertex to an orange vertex.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

23

Prim’s Algorithm for MCSTs

• Continue this process of adding an edge with the
cheapest cost connecting a green vertex to an
orange vertex until all vertices are green.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

24

Prim’s Algorithm for MCSTs

• Continue this process of adding an edge with the
cheapest cost connecting a green vertex to an
orange vertex until all vertices are green.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

25

Prim’s Algorithm for MCSTs

• Continue this process of adding an edge with the
cheapest cost connecting a green vertex to an
orange vertex until all vertices are green.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

26

Prim’s Algorithm for MCSTs

• Continue this process of adding an edge with the
cheapest cost connecting a green vertex to an
orange vertex until all vertices are green.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

27

Prim’s Algorithm for MCSTs

• Continue this process of adding an edge with the
cheapest cost connecting a green vertex to an
orange vertex until all vertices are green.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

28

Prim’s Algorithm for MCSTs

• What if we have multiple cheapest edges? Ties can
be broken arbitrarily. There may be multiple valid
minimum cost spanning trees!

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

29

Prim’s Algorithm for MCSTs

• What if we have multiple cheapest edges? Ties can
be broken arbitrarily. There may be multiple valid
minimum cost spanning trees!

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

30

Prim’s Algorithm for MCSTs

• What if we have multiple cheapest edges? Ties can
be broken arbitrarily. There may be multiple valid
minimum cost spanning trees!

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

31

Prim’s Algorithm for MCSTs

• Once all vertices are green, we have constructed a
minimum cost spanning tree.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

32

Prim’s Algorithm
let v be a vertex of G;
set V1 ß {v}, and V2 ß V - {v}
let A be the set of all edges between V1 and V2
while (|V1| < |V|) :

let e ß min edge in A between V1 and V2

add e to MCST

let u ß the vertex of e that is in V2
move u from V2 to V1;

add to A all edges incident to u
// note: A now may have edges with both ends in V1

33

Prim’s Algorithm (Variant)

• Let’s look at an equivalent version of the algorithm
that more closely matches the Java code we will
use…

• It replaces the “let e ß min edge in A
between V1 and V2” with explicit steps to:
• Find the cheapest edge not yet in the MCST
• Verify that it connects a vertex in V1 with one in V2

• (And if not, continue checking the next cheapest edge)

34

Prim’s Algorithm (Variant)
let v be a vertex of G;
set V1 ß {v}, and V2 ß V - {v}
let A ß ∅ // A will contain ALL edges between V1 and V2
while (|V1| < |V|) :

add to A all edges incident to v
// note: A now may have edges with both ends in V1
repeat :

remove cheapest edge e from A
until e is an edge between V1 and V2

add e to MCST

let v ß the vertex of e that is in V2
move v from V2 to V1

35

Prim’s Algorithm (Variant)
• Note: If G is not connected, A will eventually be

empty even though |V1| < |V|

• We fix this by:
• Replacing while(|V1| < |V|) with

while(|V1| < |V|) && A≠∅)

• Replacing until e is an edge btwn V1 and V2
with
until A≠∅ or e is an edge btwn V1 and V2

• Then Prim will find the MCST for the component
containing v

36

Prim’s Algorithm (Variant)
let v be a vertex of G;
set V1 ß {v}, and V2 ß V - {v}
let A ß ∅ // A will contain ALL edges between V1 and V2
while (|V1| < |V| && |A| > 0) :

add to A all edges incident to v
// note: A now may have edges with both ends in V1
repeat :

remove cheapest edge e from A
until (A is empty ||

e is an edge between V1 and V2)

add e to MCST

let v ß the vertex of e that is in V2
move v from V2 to V1

37

Implementing Prim’s Algorithm

• We’ll “build” the MCST by marking its edges
as “visited”

• We’ll “build” V1 by marking its vertices visited
• Question: How should we represent A?
• What operations are important to A?

• Add all edges that are incident to some vertex

• Remove a cheapest edge

• We’ll use a priority queue!

• When we remove an edge from A, we must
verify it has one end in each of V1 and V2

38

ComparableEdge Class

• Values in a PriorityQueue need to
implement Comparable

• We wrap edges of the PQ in a class called
ComparableEdge
• It requires the label used by graph edges to be of

a Comparable type (e.g., Integer)

39

MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q =
new VectorHeap<ComparableEdge<String,Integer>>();

String v; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree?

g.reset(); // clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext())

return; // graph is empty!
v = vi.next();

40

MCST: The Code

do {
// Add vertex to MCST and add all outgoing edges
// to the priority queue

g.visit(v); // all V1 are visited

for (String neighbor : g.neighbors(v)) {
// turn it into outgoing edge
e = g.getEdge(v, neighbor);
// add the edge to the priority queue
q.add(new ComparableEdge<String,Integer>(e));

}

...

41

MCST: The Code
...
searching = true; // looking for an edge btwn V1&V2
while (searching && !q.isEmpty()) {

// grab next shortest edge
e = q.remove();
// Is e between V1 and V2?
v = e.there();
if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {

searching = false;
g.visitEdge(g.getEdge(e.here(),

e.there()));
}

}
} while (!searching);

42

Summary

• Prim’s algrogithm finds a MCST for a single
connected component of any graph G=(V,E)

• It is a greedy algorithm, but
• it finds a globally optimal solution!

• Careful analysis of the required operations
helps us choose the best data structures to
maximize performance.

