CSClI

136

Data Structures &
Advanced Programming

Graph App

Minimum Cost S

ications:

banning Trees

Video Outline

e Spanning subgraphs
e Spanning trees
* Prim’s algorithm to calculate spanning trees
with the minimum cost
e Description
* Proof

* Pseudocode

* Implementation in structure5

Graph Definitions

e A subgraph of a graph G=(V, E) is a graph G’=(V’,EF’)
where:
e V' C V /] the set of vertices in the subgraph is a subset

e E° C E, // the set of edges in the subgraph is a subset

e Ife € B where e = {u,v}, then u, v € V' // edges in the
subgraph connect vertices that are also in the subgraph

 If V' =V, then G’ is called a spanning subgraph of G

* In other words, a spanning subgraph must contain all the

vertices of the original graph, but it is not required to
contain all of the edges

Spanning Trees

e A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges

Spanning Trees

e A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges

Spanning Trees

e A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges

Spanning Trees

Theorem: Every connected graph G=(V,E) contains a
spanning subgraph G’=(V,E’) that is a tree

Proof idea:

e If G’is not a tree, then it contains some cycle C
 Removing an edge from C leaves G’ connected (why?)
* Repeat this process of removing edges until no more cycles remain

* Now we are left with a tree

Minimum Cost Spanning Tree

 If a spanning tree is a subgraph that covers all the
vertices using the minimum number of edges then,

e Suppose we’re given a graph that is:

* connected, and

* has weighted edges (integer, float, double, etc.)

* A minimum cost spanning tree is a spanning tree
where the sum of all the edge weights is the smallest
possible

Minimum-Cost Spanning Trees

Minimum-Cost Spanning Trees

MCST Applications?

* Suppose Williamstown builds a municipal
broadband network. Let:

e vertices be homes,

* edges be places where cables can be laid (roads?),

e weights be distance (cable priced $/meter)

* If we identify the minimum cost spanning tree,

we can build a network that connects every
home for the minimum cost.

* Thus, finding a MCST is both theoretically and
practically interesting!

First Attempt at Finding a MCST

Instead of finding a minimum cost spanning tree,
suppose we just wanted to find to find one that
is “pretty good”

|ldea: we could try to grow it greedily!

* Pick a vertex and choose its cheapest incident
edge. Now we have a (small) tree

* Repeatedly add the cheapest edge to our tree that
still keeps it a tree (i.e., connected and no cycles)

* Once every vertex is connected, we have a
spanning tree!

Prim’s Algorithm

* The greedy algorithm we just described is
called Prim’s algorithm
* |t always find a minimum-cost spanning tree for

any connected graph (even if the weights are
negative)!

* Is this surprising?
* Each step makes the best choice it can in the

moment, but it lacks the “global” state of the
problem.

e Yet the solution is in fact globally optimal. Cool!

The Key to Prim’s Algorithm

Def: Sets V, and V, form a partition of a set V if
V,uV,=VandV,NV,=0

* In other words, V, and V, together contain

all of the vertices in V, but no vertex is in
both V, and V,.

Lemma: Let G=(V,E) be a connected graph and
let V|, and V, be a partition of V. Every MCST of
G contains a cheapest edge between V, and V,

Proof Sketch

———

Lemma: Let G=(V,E) be a connected graph and
let V, and V, be a partition of V. Every MCST of
- G contains a cheapest edge between V, and V,

* Let e be a cheapest edge between V, and V,

e Let T be a MCST of G.

° Ife & T, then T U {e} contains a cycle C and e is an edge
of C

e Some other edge €’ of C must also be between V, and V,;
since e is a cheapest edge, so w(e’) = w(e)

 (If it weren’t, we could replace e with e’ and T’s cost would be
cheaper, but that’s impossible because T was a MCST.)

Using The Key to Prove Prim

We’'ll assume all edge costs are distinct

(Not necessary but otherwise proof is slightly less elegant)

Let T be a tree produced by the greedy
algorithm, and suppose T* is a MCST for G.

Claim: T =T*

|ldea of Proof: Show that every edge added to
the tree T by the greedy algorithm is in T*
Clearly the first edge added to T is in T*

Why! Use the key!

Using The Key

Now use induction!

Suppose that, for some k 2 [, the first k edges
added to T are in T*. These form a tree T,

Let V, be the vertices of T, and let V, = V-V,

Now, the greedy algorithm will add to T the
cheapest edge e between V, and V,

But any MCST contains the (only!) cheapest
edge between V, and V,, so e is in T*

Thus the first k+1| edges of T are in T*

Prim’s Algorithm for MCSTs

e Let’s walk through an example to solidify the
algorithm. In this example, not all edge weights are
unique.

Prim’s Algorithm for MCSTs

e Start by picking some vertex

Prim’s Algorithm for MCSTs

e Start by picking some vertex

20

Prim’s Algorithm for MCSTs

* WEe'll note our partitions V| and V, using green and
orange sets. Select an edge with the cheapest cost
that connects a green vertex to an orange vertex.

21

Prim’s Algorithm for MCSTs

* WEe'll note our partitions V| and V, using green and
orange sets. Select an edge with the cheapest cost
that connects a green vertex to an orange vertex.

22

Prim’s Algorithm for MCSTs

e Continue this process of adding an edge with the
cheapest cost connecting a green vertex to an
orange vertex until all vertices are green.

23

Prim’s Algorithm for MCSTs

e Continue this process of adding an edge with the
cheapest cost connecting a green vertex to an
orange vertex until all vertices are green.

24

Prim’s Algorithm for MCSTs

e Continue this process of adding an edge with the
cheapest cost connecting a green vertex to an
orange vertex until all vertices are green.

25

Prim’s Algorithm for MCSTs

e Continue this process of adding an edge with the
cheapest cost connecting a green vertex to an
orange vertex until all vertices are green.

26

Prim’s Algorithm for MCSTs

e Continue this process of adding an edge with the
cheapest cost connecting a green vertex to an
orange vertex until all vertices are green.

27

Prim’s Algorithm for MCSTs

* What if we have multiple cheapest edges? Ties can
be broken arbitrarily. There may be multiple valid
minimum cost spanning trees!

28

Prim’s Algorithm for MCSTs

* What if we have multiple cheapest edges? Ties can
be broken arbitrarily. There may be multiple valid
minimum cost spanning trees!

29

Prim’s Algorithm for MCSTs

* What if we have multiple cheapest edges? Ties can
be broken arbitrarily. There may be multiple valid
minimum cost spanning trees!

30

Prim’s Algorithm for MCSTs

* Once all vertices are green, we have constructed a
minimum cost spanning tree.

31

Prim’s Algorithm
let v be a vertex of Gj;
set V; € {v}, and V, € V - {v}
let A be the set of all edges between V; and V,
while (|v,| < |V]) :
let e € min edge in A between V; and V,

add e to MCST

let u € the vertex of e that is in V,

move u from V, to Vy;

add to A all edges incident to u

// note: A now may have edges with both ends in V;

32

Prim’s Algorithm (Variant)

* Let’s look at an equivalent version of the algorithm
that more closely matches the Java code we will

use...

* It replaces the “let e € min edge in A
between V; and V,” with explicit steps to:

* Find the cheapest edge not yet in the MCST
e Verify that it connects a vertex in V| with one in V,

* (And if not, continue checking the next cheapest edge)

33

Prim’s Algorithm (Variant)

let v be a vertex of G;
set V; € {v}, and vV, € V - {v}
let A € @ // A will contain ALL edges between V; and V,
while (|vy| < |V]) =
add to A all edges incident to v

// note: A now may have edges with both ends in V;

repeat :
remove cheapest edge e from A

until e 1s an edge between V; and V,
add e to MCST

let v € the vertex of e that is in V,
move v from V, to V, 34

Prim’s Algorithm (Variant)

* Note: If G is not connected, A will eventually be
empty even though |V,| < |V]|

* We fix this by:
e Replacing while(|V,| < |V|) with
while(|V,| < |V]|) && A=zD)

* Replacing until e is an edge btwn V; and V,
with
until A#Q or e is an edge btwn V; and V,

* Then Prim will find the MCST for the component
containing v

35

Prim’s Algorithm (Variant)
let v be a vertex of G;
set V; € {v}, and vV, € V - {v}
let A € @ // A will contain ALL edges between V; and V,
while (|V,| < |V| && |A]| > 0)
add to A all edges incident to v

// note: A now may have edges with both ends in Vv,

repeat :
remove cheapest edge e from A
until (A is empty ||
e 1s an edge between V; and V,)

add e to MCST

let v € the vertex of e that is in V,

move v from V, to V, 36

Implementing Prim’s Algorithm

We'll “build” the MCST by marking its edges
as “‘visited”

We'll “build” V, by marking its vertices visited
Question: How should we represent A!?

* What operations are important to A!
* Add all edges that are incident to some vertex

* Remove a cheapest edge

 We'll use a priority queue!

When we remove an edge from A, we must
verify it has one end in each of V, and V,

37

ComparableEdge Class

 Values ina PriorityQueue need to
implement Comparable

* We wrap edges of the PQ in a class called
ComparableEdge

* |t requires the label used by graph edges to be of
a Comparable type (e.g.,, Integer)

38

MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q =
new VectorHeap<ComparableEdge<String,Integer>>();

String v; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree?

g.reset(); // clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext())
return; // graph is empty!
v = vi.next();

39

MCST: The Code

// Add vertex to MCST and add all outgoing edges
// to the priority queue

g.visit(v); // all V; are visited

for (String neighbor : g.neighbors(v)) {
// turn it into outgoing edge
e = g.getEdge(v, neighbor);
// add the edge to the priority queue
g.add(new ComparableEdge<String,Integer>(e));

40

MCST: The Code

searching = true; // looking for an edge btwn V,&V,
while (searching && !g.isEmpty()) {
// grab next shortest edge
e = g.remove();
// Is e between V; and V,?
v = e.there();
if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {
searching = false;
g.visitEdge(g.getEdge(e.here(),
e.there()));

}

} while (!searching);

41

Summary

Prim’s algrogithm finds a MCST for a single
connected component of any graph G=(V,E)

It is a greedy algorithm, but

it finds a globally optimal solution!

Careful analysis of the required operations
helps us choose the best data structures to
maximize performance.

42

