CSCI 136 Data Structures \& Advanced Programming

Directed Graphs

Def'n: In a directed graph $G=(V, E)$, each edge e in E is an ordered pair: $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ of vertices: its incident vertices.

- The source of e is u ; the destination/target is v .
- Edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ goes from u to v
- Note: $(u, v) \neq(v, u)$

Directed Graphs

- The out-neighbors of B are D, G, H: B has outdegree 3
- The in-neighbors of B are A, C: B has in-degree 2
- A has in-degree 0: it is a source in G
- D has out-degree 0 : it is a sink in G
- Not all graphs have sources/sinks

A walk is still an alternating sequence of vertices and edges

$$
u=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}=v
$$

but now $e_{i}=\left(v_{i-1}, v_{i}\right)$: all edges point along direction of walk

Directed Graphs

- A, B, H, E, D is a directed walk from A to D
- It's also a (simple) path
- D, E, H, B, A is not a walk from D to A
- B, G, F, C, B is a directed cycle (it's a 4-cycle)
- So is H, E, H (a 2-cycle)
- D is reachable from A (via directed path A, B, D), but A is not reachable from D
- In fact, every vertex is reachable from A

Directed Graphs

- A BFS of G from A visits every vertex
- A BFS of G from F visits all vertices but A
- A BFS of G from E visits only E, H, D
- Same is true for DFS
- BFS and DFS still find vertices reachable from start vertex
- But connectivity in directed graphs is more subtle than in undirected graphs!

Mutual Reachability

Vertices u and v in a directed graph G are mutually reachable if there are paths from u to v and from v to u Note

- For every vertex v , v and v are mutually reachable
- Mutual reachability is a reflexive relation
- For every pair of vertices u, v : if u and v are mutually reachable, then v and u are mutually reachable
- Mutual reachability is a symmetric relation
- For every triple u, v, w of vertices: If u and v are mutually reachable and v and w are mutually reachable, then u and w are mutually reachable
- Mutual reachability is a transitive relation

Mutual reachability is an equivalence relation

Strong Components

- Vertices u and v are mutually reachable vertices if there are paths from u to v and v to u
- Maximal sets of mutually reachable vertices form the strongly connected components of G

Test For Strong Connectivity

A directed graph G is strongly connected if it has only one strong component.

- G is strongly connected iff for every pair of vertices u, v in

G , u and v are mutually reachable
An "easy" test for mutual reachability

- Pick any vertex v_{0} in G and find all u reachable from v_{0}
- If some u is not reachable from v_{0}, G is not S.C.
- Otherwise, build the reverse graph $G_{\text {rev }}$ of G
- (u, v) is in $G_{r e v}$ iff (v, u) is in G
- Now check to see if all u in $G_{r e v}$ are reachable from v_{0}
- Note: u is reachable from v_{0} in $G_{r e v}$ iff v_{0} is reachable from u in G
- Can be used to find all strongly connected components

Summary \& Observations

- Every edge in a directed graph has an orientation: The edge has a source vertex and a destination vertex
- This allows for modeling more complex, asymmetric relations between pairs of objects
- All of the concepts introduced for undirected graphs have analogs
- degree(v) \rightarrow inDegree(v), outDegree(v)
- neighbor of $v \rightarrow$ in-neighbor/out-neighbor of v
- walks/paths/cycles \rightarrow directed walks/paths/cycles
- connected component \rightarrow strongly connected component
- BFS and DFS still work to find all vertices reachable from a given vertex
- As long as "neighbor" is replaced by "out-neighbor" in the search
- In later lectures we'll use these features to model important problems and develop efficient algorithms for solving them

