CSCI 136 Data Structures & Advanced Programming

Shortest Paths in Weighted Graphs (Dijkstra's Algorithm)

Shortest Paths With Edge Weights

The Problem Input:

- A directed graph G=(V,E)
- A non-negative *length* for each edge
- Vertices s, v in V

Output:

- A shortest path from s to v
 - Path length: sum of lengths of edges on path

Appears to not be any simpler than finding shortest paths from s to every vertex reachable from s! So....

The Problem Input:

- A directed graph G=(V,E)
- A non-negative length for each edge
- A vertex s in V

Output:

 Shortest paths from s to every vertex reachable from s

All Pairs Shortest Paths

The Setup: Graph G=(V,E) for which each edge e in E has an edge weight w(e).

• It's tradition: We say edge weights, not edge lengths

The Problem: Compute shortest paths between each pair of vertices.

• It's tradition: We say shortest paths, not lightest-weight paths

Idea: For each vertex s, find shortest paths from s to every other vertex reachable from s

- Used for transportation, communication, and other networks
- The graph can be directed or undirected
- For specificity, we'll work with directed graphs

What does such a set of directed paths look like?

- Suppose we have a set shortest paths {P_u : u≠s}, where P_u is a shortest path from s to u
 - There's a path P_u for each vertex u reachable from s
- Let H be the subgraph of G consisting of each vertex of G along with the edges in each P_u
- What can we say about H?
 - In example, it looked like a directed tree
 - Is that always the case?

Aside : An Optimality Property

Let P_u be a shortest path from s to u

- Write P_u as , given by $s = v_0, v_1, ..., v_k = u$
 - We can ignore edges in our notation: each (v_i, v_{i+1}) is an edge
- Consider any portion v_i , v_{i+1} , ..., v_j of the path.
- Claim: v_i , v_{i+1} , ..., v_j must be a shortest path from v_i to v_j
 - If there were a shorter path P' from v_i to v_j , we could replace v_i , v_{i+1} , ..., v_j in P with P'
 - But this is a shorter path from v to u
 - Contradiction!

So: Sub-paths of shortest paths must be shortest paths

Claim: There always exists a family of shortest paths that forms a tree (ignoring edge directions) Proof:

- Suppose, for each vertex u reachable from s, we have a shortest path P_u from s to u
- Let H be the subgraph of G consisting of the vertices and edges in each P_u

• H is the set of vertices reachable (in G) from s

 If some vertex u has in-degree greater than I, we can drop one of the incoming edges

If some vertex u has in-degree greater than I, we can drop one of the incoming edges

- If there are two edges entering u, then one of them must be from P_u and the other from P_v , for some v
- So the initial portions of those paths from s to u must both have the same weight!
 - Recall: Subpaths of shortest paths are shortest paths
- So, replacing the portion of, say P_v from s to u with P_u gives a new shortest path from s to v.
 - So: The edge of P_v entering u can be dropped from H
 - But no other edge of P_v can be dropped!

Claim: H can't have any directed cycles

- Well, s can't be on any cycles (in-deg(v) = 0)
 - Otherwise, s appeared as a vertex somewhere along one of the paths $\ensuremath{P_u}$
 - But then P_u can't be a shortest path from s to u
- If there were a cycle, some vertex on it would have in-degree > I
 - Since s is not on the cycle, There must be a path from s to some vertex u on the cycle.
 - But then u has indegree > I

In fact, even disregarding edge directions, there would be no cycles

- Some vertex would have in-degree at least 2
 - Or else there's a directed cycle (Why?)
- So, we can assume that there is some set of shortest paths that forms a (directed) tree
- Dijkstra's Algorithm: Greedily grow such a tree
- The question is: How?

In fact, even disregarding edge directions, there would be no cycles

- Some vertex would have in-degree at least 2
- Or else there's a directed cycle

So, the paths form a directed tree with root v!

Thus: There always exists a family of shortest paths that forms a tree (ignoring edge directions)

Dijkstra's algorithm grows a tree T of shortest paths from s to every vertex reachable from s

- Begins with T just containing s
- Repeatedly adds a new vertex and edge to T
 - At all times, T consists of shortest paths (in G) from s to every other vertex of T
- Next vertex/edge is selected greedily

Dijkstra Shortest Paths Tree

The Tree of Shortest Paths Found by Dijkstra's Algorithm

The Right Kind of Greed

- A start: take shortest edge from start vertex s
 - That must be a shortest path!
 - And now we have a small tree of shortest paths
- What next?
 - Design an algorithm thinking inductively
 - Suppose we have found a tree T_k that has shortest paths from s to the k-I vertices "closest" to s
 - What vertex would we want to add next?

Finding the Best Vertex to Add to T_k

Question: Can we find the next closest vertex to s?

What's a Good Greedy Choice?

Idea: Pick edge e from u in T_k to v in $G-T_k$ that minimizes the length of the tree path from s up to-and through-e

Now add v and e to T_k to get tree T_{k+1}

Now T_{k+1} is a tree consisting of shortest paths from s to the k vertices closest to s! [Proof?] Repeat until k = |V|

Some Notation Reminders

- I(e) : length (weight) of edge e
- d(u,v) : *distance* from u to v
 - Length of shortest path from u to v
- The priority queue stores an *estimate* of the distance from s to w by storing, for edge (v,w), d(s,v) + l(v,w)
 - The estimate is always an *upper bound* on d(s,w)

Dijkstra: Data Structures

- Map: Store the tree T of shortest paths
 - Key is a vertex label v
 - Value is edge of T having v as destination vertex
 - From this we can find path in T from s to v
- Priority Queue: Store edges (v,w) with current approximate distance
 - As Comparable Association(Key,Value) where
 - Key is d(s,v) + l(v,w): The estimated distance from s to w
 - Value is the edge e=(v,w)
 - The PQ will always contain all edges from vertices of T to vertices *not* in T
 - As well as some vestigal edges with both ends in T

Dijkstra's Algorithm

Dijkstra(G, s) // l(e) is the length of edge e let $T \leftarrow (\{s\}, \emptyset)$ and PQ be an empty priority queue for each neighbor v of s, add edge (s,v) to PQ with priority l(e)while T doesn't have all vertices of G and PQ is non-empty repeat

 $e \leftarrow PQ.removeMin() // skip edges with both ends in T$ $until PQ is empty or e=(u,v) for u \in T, v \notin T$ $if e=(u,v) for u \in T, v \notin T$ add e (and v) to T for each neighbor w of vadd edge (v,w) to PQ with weight/key d(s,v) + l(v,w) 19

Dijkstra's Algorithm

Priority Queue

Current: 500 SF->Port (need to add Port's neighbors to PQ)

SF->Den; SF->Dal 1000 1500

Current: 500 SF->Port

 SF->Port->Sea;
 SF->Den;
 SF->Dal

 600
 1000
 1500

Current: 600 SF->Port->Sea

SF->Den; SF->Dal 1000 1500

Current: 600 SF->Port->Sea

SF->Den; SF->Dal; SF->Port->Sea->Bos 1000 1500 3400

Current: 1000 SF->Den

SF->Dal; SF->Port->Sea->Bos 1500 3400

Current: 1000 SF->Den

 SF->Dal;
 SF->Den->Dal;
 SF->Den->Chi;
 SF->Port->Sea->Bos

 1500
 1700
 1900
 3400

Current: 1500 SF->Dal

 SF->Den->Dal;
 SF->Den->Chi;
 SF->Port->Sea->Bos

 1700
 1900
 3400

Current: 1500 SF->Dal

 SF->Den->Dal;
 SF->Den->Chi;
 SF->Dal->Atl;
 SF->Dal->LA;
 SF->Port->Sea->Bos

 1700
 1900
 2200
 2700
 3400

Current: 1900 SF->Den->Chi

 $\begin{array}{c} \longrightarrow \\ SF->Dal->Atl; \\ 2200 \end{array} \qquad \begin{array}{c} SF->Dal->LA; \\ 2700 \end{array} \qquad \begin{array}{c} SF->Port->Sea->Bos \\ 3400 \end{array}$

Current: 1900 SF->Den->Chi

 SF->Dal->Atl;
 SF->Den->Chi->Atl;
 SF->Dal->LA;
 SF->Port->Sea->Bos

 2200
 2500
 2700
 3400

Current: 2200 SF->Dal->Atl

 SF->Den->Chi->Atl;
 SF->Dal->LA;
 SF->Dal->Atl->NY;
 SF->Port->Sea->Bos

 2500
 2700
 3000
 3400

Current: 3000 SF->Dal->Atl->NY

SF->Port->Sea->Bos 3400

Current: 3200 SF->Dal->Atl->NY->Bos

SF->Port->Sea->Bos 3400


```
Current: 3400 SF->Port->Sea->Bos
```


Current:

42

Dijkstra: Space Complexity

- Graph: O(|V| + |E|)
 - Each vertex and edge uses a constant amount of space
- Priority Queue: O(|E|)
 - Each edge takes up constant amount of space
- Map: O(|V|)
- Result: O(|V| + |E|)
 - Optimal in Big-O sense!

Dijkstra : Time Complexity

Assume Map ops are O(I) time

Across all iterations of outer while loop

- Edges are added to and removed from the priority queue
 - But any edge is added/removed at most once!
 - Total PQ operation cost is O(|E| log |E|) time
 - Which is O(|E| log |V|) time
 - Since $\log |E| < \log |V|^2 = 2 \log |V|$
 - All other operations take constant time
- Thus time complexity is $O(|V| + |E| \log |V|)$

Summary & Observation

Dijkstra's Algorithm is a highly efficient method for solving shortest path problems

- Employs a relatively simple greedy algorithm
- A variant of this algorithm used to be the method used for routing internet traffic
- Faster algorithms are much more complex
- Uses Priority Queue to avoid sorting
- Works on undirected graphs, too Like this kind of thing? Consider Csci 256!