CSCI 136
Data Structures &
Advanced Programming

Shortest Paths in Weighted Graphs
(Dijkstra's Algorithm)

Shortest Paths With Edge Weights

The Problem

Input:

* A directed graph G=(V|E)

* A non-negative length for each
edge

* Vertices s,vinV

Output:

* A shortest path from s to v
* Path length: sum of lengths

of edges on path

Single Source Shortest Paths

Appears to not be any simpler than finding shortest paths

from s to every vertex reachable from s!
So....

The Problem

Input:

* A directed graph G=(V,E)

* A non-negative length for each
edge

* AvertexsinV

Output:

* Shortest paths from s to every
vertex reachable from s

All Pairs Shortest Paths

The Setup: Graph G=(V,E) for which each edge e in E has
an edge weight w(e).

* |t's tradition: We say edge weights, not edge lengths
The Problem: Compute shortest paths between each pair
of vertices.

e |It's tradition: We say shortest paths, not lightest-weight paths
|dea: For each vertex s, find shortest paths from s to every
other vertex reachable from s

e Used for transportation, communication, and other networks
* The graph can be directed or undirected
* For specificity, we'll work with directed graphs

Single Source Shortest Paths

What does such a set of directed paths look like?

e Suppose we have a set shortest paths {P, : u#s},
where P, is a shortest path from s to u

* There's a path P, for each vertex u reachable from s

* Let H be the subgraph of G consisting of each
vertex of G along with the edges in each P,

e W

nat can we say about H?

n example, it looked like a directed tree

s that always the case!

Aside : An Optimality Property

Let P, be a shortest path from s to u
* Write P, as, givenby s =vy v, ...,v . =u
* We can ignore edges in our notation: each (v,v.,,) is an edge
e Consider any portion v, v, ..., v; of the path.
* Claim: v, iy, ..., v must be a shortest path from v; to v,

* If there were a shorter path P' from v, to v, we could
replace v, Vi, ..., v; in P with P’

e But this is a shorter path from v to u

e Contradiction!
So: Sub-paths of shortest paths must be shortest paths

Single Source Shortest Paths

Claim: There always exists a family of shortest
paths that forms a tree (ignoring edge directions)

Proof:

* Suppose, for each vertex u reachable from s,
we have a shortest path P, from s to u

* Let H be the subgraph of G consisting of the
vertices and edges in each P,
* H is the set of vertices reachable (in G) from s

* |If some vertex u has in-degree greater than |,
we can drop one of the incoming edges

Single Source Shortest Paths

If some vertex u has in-degree greater than |, we can
drop one of the incoming edges

* If there are two edges entering u, then one of them
must be from P, and the other from P,, for some v

* So the initial portions of those paths from s to u must
both have the same weight!
e Recall: Subpaths of shortest paths are shortest paths

* So, replacing the portion of, say P, from s to u with P,
gives a new shortest path from s to v.
e So: The edge of P, entering u can be dropped from H
e But no other edge of P, can be dropped!

Single Source Shortest Paths

Claim: H can’t have any directed cycles
* Well, s can’t be on any cycles (in-deg(v) = 0)

e Otherwise, s appeared as a vertex somewhere along one
of the paths P,

e But then P, can't be a shortest path from s to u

* |f there were a cycle, some vertex on it would have
in-degree > |

 Since s is not on the cycle, There must be a path from s to
some vertex u on the cycle.

e But then u has indegree > |

Single Source Shortest Paths
In fact, even disregarding edge directions, there
would be no cycles

* Some vertex would have in-degree at least 2
* Or else there’s a directed cycle (Why?)

e So, we can assume that there is some set of
shortest paths that forms a (directed) tree

* Dijkstra’s Algorithm: Greedily grow such a tree

e The question is: How!

Single Source Shortest Paths

In fact, even disregarding
edge directions, there
would be no cycles

e Some vertex would have
in-degree at least 2 ¢ ®

e Or else there’s a directed
cycle

So, the paths form a directed tree with root v!

Single Source Shortest Paths

Thus: There always exists a family of shortest
paths that forms a tree (ignoring edge directions)

Dijkstra's algorithm grows a tree T of shortest
paths from s to every vertex reachable from s

* Begins with T just containing s

* Repeatedly adds a new vertex and edge to T

e At all times, T consists of shortest paths (in G)
from s to every other vertex of T

* Next vertex/edge is selected greedily

Dijkstra Shortest Paths Tree

The Tree of Shortest Paths Found by Dijkstra’s Algorithm

The Right Kind of Greed

e A start: take shortest edge from start vertex s
e That must be a shortest path!

* And now we have a small tree of shortest paths

e What next?

* Design an algorithm thinking inductively

e Suppose we have found a tree T, that has shortest
paths from s to the k-1 vertices “closest” to s

* What vertex would we want to add next!?

Finding the Best Vertex to Add to T,

Not all edges are displayed

Question: Can we find the next closest vertex to s?

What's a Good Greedy Choice!?

@ |dea: Pick edge e from
O uin T, tovin G-T, that

(0]
Q&'ﬁ‘ minimizes the length
W‘.‘ O © @ | ofthetree pathfroms
N \-S. up to—and through-e
Now add v and e to Ty
to get tree Ty,

Now T,. is a tree consisting of shortest paths from s to the
kK vertices closest to s! [Proof?] Repeat until k = |V|

Some Notation Reminders

* |(e) : length (weight) of edge e
e d(u,v): distance fromutov
« Length of shortest path fromutov

« The priority queue stores an estimate of the distance from
s to w by storing, for edge (v,w), d(s,v) + l(v,w)
« The estimate is always an upper bound on d(s,w)

Dijkstra: Data Structures

* Map: Store the tree T of shortest paths
* Key is a vertex label v

* Value is edge of T having v as destination vertex

e From this we can find path in T from s to v

* Priority Queue: Store edges (v,w) with current
approximate distance

e As Comparable Association(Key,Value) where
e Key is d(s,v) + l[(v,w) : The estimated distance from s to w
e Value is the edge e=(v,w)
* The PQ will always contain all edges from vertices
of T to vertices notin T

* As well as some vestigal edges with both ends in T E

Dijkstra’s Algorithm

Dytstra(G, s) /7 l(e) is the length of edge e
let 1< (Is), ©) and PQ be an empty priority queue
Jor each neighbor v of s, add edge (s,v) to PQ with priority [(e)
while T doesn t have all vertces of G and PQ is non-empty
repeat
e & PQ.removeMin() // skip edges with both ends in T’
until PQ is empty ore=(w,v) foru€l, v 7’
if e=(wv)foru€l, veg T
add e (andv) o T

Jor each neighbor w of v
add edge (v,w) to PQ with weight/key d(s,v) + [(v,w) s

Seattle

100

[Portland }

2800

Chicago
900 5

Denver

Dijkstra's Algorithm

Boston

Atlanta }

20

Seattle

2800

100

[Portland }

. 1000
SF

0
w

Denver

900

Priority Queue

—

Chicago

600

Boston

Atlanta }

21

Seattle

2800

100

[Portland }

. 1000
SF

0
w

Denver

900

Priority Queue

—

Chicago

600

Boston

Atlanta }

22

Seattle 2800

100

[Portland }

500 000 Chicago

Denver

Current: 500 SF->Port (need to add Port’ s neighbors to PQ)

:> SF->Den; SF->Dal
1000 1500

Boston

Atlanta }

23

Seattle

2800

100

[Portland }
500

Denver

m

900

Current: 500 SF->Port
:> : SF->Den;

1000

SF->Dal
1500

Chicago

Boston

Atlanta }

24

Seattle

2800

600
100

[Portland }
500

Denver

m

900

Current: 600 SF->Port->Sea

:> SF->Den; SF->Dal
1000 1500

Chicago

Boston

Atlanta }

25

Seattle

2800

600
100

[Portland }
500

Denver

m

900

Current: 600 SF->Port->Sea

:> SF->Den; SF->Dal;
1000 1500

Chicago

Boston

Atlanta }

26

Seattle

2800

600
100

[Portland }
500

LA 1200

900

Current: 1000 SF->Den

:> SF->Dal; SF->Port->Sea->Bos
1500 3400

Chicago

Boston

Atlanta }

27

Seattle

2800

600
100

[Portland }
500

LA 1200

900

Current: 1000 SF->Den
:> SF->Dal;

1500

Boston

Chicago

Atlanta }

: SF->Port->Sea->Bos
3400

28

Seattle

2800

600
100

[Portland }
500

LA 1200

Chicago
900 &

Current: 1500 SF->Dal

: SF->Den->Dal; SF->Den->Chi;
1700 1900

1500

SF->Port->Sea->Bos
3400

Boston

Atlanta }

29

Seattle

2800

600
100

[Portland }
500

0
w

900

Current: 1500 SF->Dal

SF->Den->Dal; SF->Den->Chi;
:> 1700 1900

1500

Chicago

600

’

Boston

Atlanta }

SF->Port->Sea->Bos
3400

30

Seattle 2800

600
100

[Portland }
500

Chicago

900

LA 1200

1500
Current: 1700 SF->Den->Dal (we already have Dallas!)

:> SF->Den->Chi; SF->Dal->Atl; SF->Dal->LA;
1900 2200 2700

Boston

Atlanta }

SF->Port->Sea->Bos
3400

31

Seattle

2800

600
100

[Portland }
500

m

Chicago
1900

900

Current: 1900 SF->Den->Chi

:> SF->Dal->Atl; SF->Dal->LA;
2200 2700 3400

1500

SF->Port->Sea->Bos

Boston

Atlanta }

32

Seattle 2800

600 Boston
100

[Portland }
500

Chicago
1900

900

0
Atlanta }
LA
| 500
Current: 1900 SF->Den->Chi
:> SF->Dal->Atl; ; SF->Dal->LA; SF->Port->Sea->Bos

2200 2700 3400

33

Seattle 2800

600 Boston
100

[Portland }
500

Chicago
1900

900

Atlanta }

@ 2200

1500

Current: 2200 SF->Dal->Atl

:> SF->Den->Chi->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2500 2700 3400

34

Seattle

2800

600
100

[Portland }
500

900

LA 1200

Chicago

1900

1500

Current: 2200 SF->Dal->Atl

:> SF->Den->Chi->Atl; SF->Dal->LA;
2500 2700

700

’

Boston

Atlanta }
2200

SF->Port->Sea->Bos
3400

35

Seattle 2800

600 Boston
100

[Portland }
500

Chicago
1900

900

0
Atlanta }
LA 2200
1500
Current: 2500 SF->Den->Chi->Atl
:> SF->Dal->LA; SF->Dal->Atl->NY; SF->Port->Sea->Bos

2700 3000 3400

36

Seattle

2800

600
100

[Portland }

Chicago
900 &

1900

2700
Current: 2700 SF->Dal->LA

:> SF->Dal->Atl->NY;
3000

1500

SF->Port->Sea->Bos
3400

700

Boston

Atlanta }
2200

37

Seattle

2800

600
100

[Portland }
500

Denver

900

Chicago

1900

LA 1200

2700
Current: 3000 SF->Dal->Atl->NY

:> SF->Port->Sea->Bos
3400

1500

700

Boston

Atlanta }

2200

38

Seattle 2800

600
100
[Portland }
500 500 Chicago

1900

Denver

LA 1200

2700 1500
Current: 3000 SF->Dal->Atl->NY

:> : SF->Port->Sea->Bos
3400

700

Boston

Atlanta }

2200

39

Seattle 2800

600
100
[Portland }
500 900

Denver

LA 1200

2700 1500
Current: 3200 SF->Dal->Atl->NY->Bos

:> SF->Port->Sea->Bos
3400

Chicago

1900

700

Boston

Atlanta }

2200

40

Seattle

2800

600
100

[Portland }
500

Denver

LA 1200

Chicago
900 &

1900

2700

Current: 3400 SF->Port->Sea->Bos

—

1500

700

Boston

Atlanta }
2200

41

Seattle

600
100

[Portland }
500

2800

Denver

Chicago
900 &

1900

2700

Current;

—

1500

700

Boston

Atlanta }
2200

42

Dijkstra: Space Complexity

Graph: O(|V]| + |E|)
e Each vertex and edge uses a constant amount of
space

Priority Queue: O(|E|)

e Each edge takes up constant amount of space
Map: O(|V|)
Result: O(|V| + |E])

e Optimal in Big-O sense!

43

Dijkstra : Time Complexity

Assume Map ops are O(l) time
Across all iterations of outer while loop

* Edges are added to and removed from the
priority queue
* But any edge is added/removed at most once!

* Total PQ operation cost is O(|E| log |E|) time
* Which is O(|E| log [V|) time
— Since log |E| < log [V|? = 2 log |V|

* All other operations take constant time

e Thus time complexity is O(|V| + |E| log |V])

44

Summary & Observation

Dijkstra's Algorithm is a highly efficient method
for solving shortest path problems

* Employs a relatively simple greedy algorithm

* A variant of this algorithm used to be the
method used for routing internet traffic

e Faster algorithms are much more complex
e Uses Priority Queue to avoid sorting

* Works on undirected graphs, too
Like this kind of thing? Consider Csci 256!

45

