CSCI 136
Data Structures &
Advanced Programming

Shortest Paths in Weighted Graphs
(Dijkstra's Algorithm)



Shortest Paths With Edge Weights

The Problem

Input:

* A directed graph G=(V|E)

* A non-negative length for each
edge

* Vertices s,vinV

Output:

* A shortest path from s to v
* Path length: sum of lengths

of edges on path




Single Source Shortest Paths

Appears to not be any simpler than finding shortest paths

from s to every vertex reachable from s!
So....

The Problem

Input:

* A directed graph G=(V,E)

* A non-negative length for each
edge

* AvertexsinV

Output:

* Shortest paths from s to every
vertex reachable from s




All Pairs Shortest Paths

The Setup: Graph G=(V,E) for which each edge e in E has
an edge weight w(e).

* |t's tradition: We say edge weights, not edge lengths
The Problem: Compute shortest paths between each pair
of vertices.

e |It's tradition: We say shortest paths, not lightest-weight paths
|dea: For each vertex s, find shortest paths from s to every
other vertex reachable from s

e Used for transportation, communication, and other networks
* The graph can be directed or undirected
* For specificity, we'll work with directed graphs



Single Source Shortest Paths

What does such a set of directed paths look like?

e Suppose we have a set shortest paths {P, : u#s},
where P, is a shortest path from s to u

* There's a path P, for each vertex u reachable from s

* Let H be the subgraph of G consisting of each
vertex of G along with the edges in each P,

e W

nat can we say about H?

n example, it looked like a directed tree

s that always the case!



Aside : An Optimality Property

Let P, be a shortest path from s to u
* Write P, as, givenby s =vy v, ...,v . =u
* We can ignore edges in our notation: each (v,v.,,) is an edge
e Consider any portion v, v, ..., v; of the path.
* Claim: v, iy, ..., v must be a shortest path from v; to v,

* If there were a shorter path P' from v, to v, we could
replace v, Vi, ..., v; in P with P’

e But this is a shorter path from v to u

e Contradiction!
So: Sub-paths of shortest paths must be shortest paths



Single Source Shortest Paths

Claim: There always exists a family of shortest
paths that forms a tree (ignoring edge directions)

Proof:

* Suppose, for each vertex u reachable from s,
we have a shortest path P, from s to u

* Let H be the subgraph of G consisting of the
vertices and edges in each P,
* H is the set of vertices reachable (in G) from s

* |If some vertex u has in-degree greater than |,
we can drop one of the incoming edges



Single Source Shortest Paths

If some vertex u has in-degree greater than |, we can
drop one of the incoming edges

* If there are two edges entering u, then one of them
must be from P, and the other from P,, for some v

* So the initial portions of those paths from s to u must
both have the same weight!
e Recall: Subpaths of shortest paths are shortest paths

* So, replacing the portion of, say P, from s to u with P,
gives a new shortest path from s to v.
e So: The edge of P, entering u can be dropped from H
e But no other edge of P, can be dropped!



Single Source Shortest Paths

Claim: H can’t have any directed cycles
* Well, s can’t be on any cycles (in-deg(v) = 0)

e Otherwise, s appeared as a vertex somewhere along one
of the paths P,

e But then P, can't be a shortest path from s to u

* |f there were a cycle, some vertex on it would have
in-degree > |

 Since s is not on the cycle, There must be a path from s to
some vertex u on the cycle.

e But then u has indegree > |



Single Source Shortest Paths
In fact, even disregarding edge directions, there
would be no cycles

* Some vertex would have in-degree at least 2
* Or else there’s a directed cycle (Why?)

e So, we can assume that there is some set of
shortest paths that forms a (directed) tree

* Dijkstra’s Algorithm: Greedily grow such a tree

e The question is: How!



Single Source Shortest Paths

In fact, even disregarding
edge directions, there
would be no cycles

e Some vertex would have
in-degree at least 2 ¢ ®

e Or else there’s a directed
cycle

So, the paths form a directed tree with root v!



Single Source Shortest Paths

Thus: There always exists a family of shortest
paths that forms a tree (ignoring edge directions)

Dijkstra's algorithm grows a tree T of shortest
paths from s to every vertex reachable from s

* Begins with T just containing s

* Repeatedly adds a new vertex and edge to T

e At all times, T consists of shortest paths (in G)
from s to every other vertex of T

* Next vertex/edge is selected greedily



Dijkstra Shortest Paths Tree

The Tree of Shortest Paths Found by Dijkstra’s Algorithm




The Right Kind of Greed

e A start: take shortest edge from start vertex s
e That must be a shortest path!

* And now we have a small tree of shortest paths

e What next?

* Design an algorithm thinking inductively

e Suppose we have found a tree T, that has shortest
paths from s to the k-1 vertices “closest” to s

* What vertex would we want to add next!?



Finding the Best Vertex to Add to T,

Not all edges are displayed

Question: Can we find the next closest vertex to s?



What's a Good Greedy Choice!?

@ |dea: Pick edge e from
O uin T, tovin G-T, that

(0 ]
Q&'ﬁ‘ minimizes the length
W‘.‘ O © @ | ofthetree pathfroms
N \-S. up to—and through-e
Now add v and e to Ty
to get tree Ty,

Now T,. is a tree consisting of shortest paths from s to the
kK vertices closest to s! [Proof?] Repeat until k = |V|



Some Notation Reminders

* |(e) : length (weight) of edge e
e d(u,v): distance fromutov
« Length of shortest path fromutov

« The priority queue stores an estimate of the distance from
s to w by storing, for edge (v,w), d(s,v) + l(v,w)
« The estimate is always an upper bound on d(s,w)



Dijkstra: Data Structures

* Map: Store the tree T of shortest paths
* Key is a vertex label v

* Value is edge of T having v as destination vertex

e From this we can find path in T from s to v

* Priority Queue: Store edges (v,w) with current
approximate distance

e As Comparable Association(Key,Value) where
e Key is d(s,v) + l[(v,w) : The estimated distance from s to w
e Value is the edge e=(v,w)
* The PQ will always contain all edges from vertices
of T to vertices notin T

* As well as some vestigal edges with both ends in T E



Dijkstra’s Algorithm

Dytstra(G, s) /7 l(e) is the length of edge e
let 1< (Is), ©) and PQ be an empty priority queue
Jor each neighbor v of s, add edge (s,v) to PQ with priority [(e)
while T doesn t have all vertces of G and PQ is non-empty
repeat
e & PQ.removeMin() // skip edges with both ends in T’
until PQ is empty ore=(w,v) foru€l, v 7’
if e=(wv)foru€l, veg T
add e (andv) o T

Jor each neighbor w of v
add edge (v,w) to PQ with weight/key d(s,v) + [(v,w) s
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Dijkstra: Space Complexity

Graph: O(|V]| + |E|)
e Each vertex and edge uses a constant amount of
space

Priority Queue: O(|E|)

e Each edge takes up constant amount of space
Map: O(|V|)
Result: O(|V| + |E])

e Optimal in Big-O sense!
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Dijkstra : Time Complexity

Assume Map ops are O(l) time
Across all iterations of outer while loop

* Edges are added to and removed from the
priority queue
* But any edge is added/removed at most once!

* Total PQ operation cost is O(|E| log |E|) time
* Which is O(|E| log [V|) time
— Since log |E| < log [V|? = 2 log |V|

* All other operations take constant time

e Thus time complexity is O(|V| + |E| log |V])
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Summary & Observation

Dijkstra's Algorithm is a highly efficient method
for solving shortest path problems

* Employs a relatively simple greedy algorithm

* A variant of this algorithm used to be the
method used for routing internet traffic

e Faster algorithms are much more complex
e Uses Priority Queue to avoid sorting

* Works on undirected graphs, too
Like this kind of thing? Consider Csci 256!
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