
CSCI 136
Data Structures &

Advanced Programming

Shortest Paths in Weighted Graphs
(Dijkstra's Algorithm)

2

Shortest Paths With Edge Weights

The Problem
Input:
• A directed graph G=(V,E)
• A non-negative length for each

edge
• Vertices s, v in V
Output:
• A shortest path from s to v

• Path length: sum of lengths
of edges on path

3

Single Source Shortest Paths

The Problem
Input:
• A directed graph G=(V,E)
• A non-negative length for each

edge
• A vertex s inV
Output:
• Shortest paths from s to every

vertex reachable from s

Appears to not be any simpler than finding shortest paths
from s to every vertex reachable from s!
So….

4

All Pairs Shortest Paths
The Setup: Graph G=(V,E) for which each edge e in E has
an edge weight w(e).

• It's tradition: We say edge weights, not edge lengths

The Problem: Compute shortest paths between each pair
of vertices.

• It's tradition: We say shortest paths, not lightest-weight paths

Idea: For each vertex s, find shortest paths from s to every
other vertex reachable from s

• Used for transportation, communication, and other networks

• The graph can be directed or undirected
• For specificity, we'll work with directed graphs

5

Single Source Shortest Paths

What does such a set of directed paths look like?
• Suppose we have a set shortest paths {Pu : u≠s},

where Pu is a shortest path from s to u
• There's a path Pu for each vertex u reachable from s

• Let H be the subgraph of G consisting of each
vertex of G along with the edges in each Pu

• What can we say about H?
• In example, it looked like a directed tree

• Is that always the case?

6

Aside : An Optimality Property

Let Pu be a shortest path from s to u
• Write Pu as , given by s = v0, v1, …, vk = u

• We can ignore edges in our notation: each (vi,vi+1) is an edge

• Consider any portion vi, vi+1, …, vj of the path.
• Claim: vi, vi+1, …, vj must be a shortest path from vi to vj
• If there were a shorter path P' from vi to vj, we could

replace vi, vi+1, …, vj in P with P'
• But this is a shorter path from v to u

• Contradiction!

So: Sub-paths of shortest paths must be shortest paths

7

Single Source Shortest Paths
Claim: There always exists a family of shortest
paths that forms a tree (ignoring edge directions)
Proof:
• Suppose, for each vertex u reachable from s,

we have a shortest path Pu from s to u
• Let H be the subgraph of G consisting of the

vertices and edges in each Pu
• H is the set of vertices reachable (in G) from s

• If some vertex u has in-degree greater than 1,
we can drop one of the incoming edges

8

Single Source Shortest Paths
If some vertex u has in-degree greater than 1, we can
drop one of the incoming edges

• If there are two edges entering u, then one of them
must be from Pu and the other from Pv, for some v

• So the initial portions of those paths from s to u must
both have the same weight!
• Recall: Subpaths of shortest paths are shortest paths

• So, replacing the portion of, say Pv from s to u with Pu
gives a new shortest path from s to v.
• So: The edge of Pv entering u can be dropped from H

• But no other edge of Pv can be dropped!

9

Single Source Shortest Paths

Claim: H can’t have any directed cycles
• Well, s can’t be on any cycles (in-deg(v) = 0)

• Otherwise, s appeared as a vertex somewhere along one
of the paths Pu

• But then Pu can't be a shortest path from s to u

• If there were a cycle, some vertex on it would have
in-degree > 1
• Since s is not on the cycle, There must be a path from s to

some vertex u on the cycle.

• But then u has indegree > 1

10

Single Source Shortest Paths
In fact, even disregarding edge directions, there
would be no cycles
• Some vertex would have in-degree at least 2
• Or else there’s a directed cycle (Why?)

• So, we can assume that there is some set of
shortest paths that forms a (directed) tree

• Dijkstra’s Algorithm: Greedily grow such a tree
• The question is: How?

11

Single Source Shortest Paths

In fact, even disregarding
edge directions, there
would be no cycles
• Some vertex would have

in-degree at least 2

• Or else there’s a directed
cycle

So, the paths form a directed tree with root v!

12

Single Source Shortest Paths
Thus: There always exists a family of shortest
paths that forms a tree (ignoring edge directions)

Dijkstra's algorithm grows a tree T of shortest
paths from s to every vertex reachable from s
• Begins with T just containing s
• Repeatedly adds a new vertex and edge to T
• At all times, T consists of shortest paths (in G)

from s to every other vertex of T

• Next vertex/edge is selected greedily

13

Dijkstra Shortest Paths Tree

14

The Right Kind of Greed

• A start: take shortest edge from start vertex s
• That must be a shortest path!
• And now we have a small tree of shortest paths

• What next?
• Design an algorithm thinking inductively
• Suppose we have found a tree Tk that has shortest

paths from s to the k-1 vertices “closest” to s
• What vertex would we want to add next?

15

Finding the Best Vertex to Add to Tk

Not all edges are displayed

Question: Can we find the next closest vertex to s?

16

What’s a Good Greedy Choice?

Idea: Pick edge e from
u in Tk to v in G-Tk that
minimizes the length
of the tree path from s
up to–and through–e

Now add v and e to Tk
to get tree Tk+1

Now Tk+1 is a tree consisting of shortest paths from s to the
k vertices closest to s! [Proof?] Repeat until k = |V|

17

Some Notation Reminders

• l(e) : length (weight) of edge e
• d(u,v) : distance from u to v

• Length of shortest path from u to v

• The priority queue stores an estimate of the distance from
s to w by storing, for edge (v,w), d(s,v) + l(v,w)

• The estimate is always an upper bound on d(s,w)

18

Dijkstra: Data Structures
• Map: Store the tree T of shortest paths
• Key is a vertex label v
• Value is edge of T having v as destination vertex

• From this we can find path in T from s to v

• Priority Queue: Store edges (v,w) with current
approximate distance
• As Comparable Association(Key,Value) where

• Key is d(s,v) + l(v,w) : The estimated distance from s to w

• Value is the edge e=(v,w)

• The PQ will always contain all edges from vertices
of T to vertices not in T
• As well as some vestigal edges with both ends in T

19

Dijkstra’s Algorithm
Dijkstra(G, s) // l(e) is the length of edge e
let Tß({s}, ∅) and PQ be an empty priority queue
for each neighbor v of s, add edge (s,v) to PQ with priority l(e)
while T doesn’t have all vertices of G and PQ is non-empty

repeat
e ß PQ.removeMin() // skip edges with both ends in T

until PQ is empty or e=(u,v) for u∈T, v ∉ T
if e=(u,v) for u∈T, v ∉ T

add e (and v) to T
for each neighbor w of v

add edge (v,w) to PQ with weight/key d(s,v) + l(v,w)

20

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

Dijkstra's Algorithm

21

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Priority Queue

22

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Port; SF->Den; SF->Dal
500 1000 1500

Priority Queue

23

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Den; SF->Dal
1000 1500

Current: 500 SF->Port (need to add Port’s neighbors to PQ)

500

24

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Port->Sea; SF->Den; SF->Dal
600 1000 1500

Current: 500 SF->Port

500

25

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Den; SF->Dal
1000 1500

Current: 600 SF->Port->Sea

500

600

26

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Den; SF->Dal; SF->Port->Sea->Bos
1000 1500 3400

Current: 600 SF->Port->Sea

500

600

27

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Dal; SF->Port->Sea->Bos
1500 3400

Current: 1000 SF->Den

500

600

1000

28

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1000 SF->Den

500

600

1000

SF->Dal; SF->Den->Dal; SF->Den->Chi; SF->Port->Sea->Bos
1500 1700 1900 3400

29

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1500 SF->Dal

500

600

1000

1500

SF->Den->Dal; SF->Den->Chi; SF->Port->Sea->Bos
1700 1900 3400

30

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1500 SF->Dal

500

600

1000

1500

SF->Den->Dal; SF->Den->Chi; SF->Dal->Atl; SF->Dal->LA; SF->Port->Sea->Bos
1700 1900 2200 2700 3400

31

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Den->Chi; SF->Dal->Atl; SF->Dal->LA; SF->Port->Sea->Bos
1900 2200 2700 3400

Current: 1700 SF->Den->Dal (we already have Dallas!)

500

600

1000

1500

32

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1900 SF->Den->Chi

500

600

1000

1500

SF->Dal->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2200 2700 3400

1900

33

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1900 SF->Den->Chi

500

600

1000

1500

1900

SF->Dal->Atl; SF->Den->Chi->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2200 2500 2700 3400

34

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 2200 SF->Dal->Atl

500

600

1000

1500

1900

2200

SF->Den->Chi->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2500 2700 3400

35

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 2200 SF->Dal->Atl

500

600

1000

1500

1900

2200

SF->Den->Chi->Atl; SF->Dal->LA; SF->Dal->Atl->NY; SF->Port->Sea->Bos
2500 2700 3000 3400

36

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 2500 SF->Den->Chi->Atl

500

600

1000

1500

1900

2200

SF->Dal->LA; SF->Dal->Atl->NY; SF->Port->Sea->Bos
2700 3000 3400

37

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 2700 SF->Dal->LA

500

600

1000

1500

1900

2200

2700

SF->Dal->Atl->NY; SF->Port->Sea->Bos
3000 3400

38

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 3000 SF->Dal->Atl->NY

500

600

1000

1500

1900

2200

2700

3000

SF->Port->Sea->Bos
3400

39

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 3000 SF->Dal->Atl->NY

500

600

1000

1500

1900

2200

2700

3000

SF->Dal->Atl->NY->Bos; SF->Port->Sea->Bos
3200 3400

40

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 3200 SF->Dal->Atl->NY->Bos

500

600

1000

1500

1900

2200

2700

3000

3200

SF->Port->Sea->Bos
3400

41

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 3400 SF->Port->Sea->Bos

500

600

1000

1500

1900

2200

2700

3000

3200

42

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current:

500

600

1000

1500

1900

2200

2700

3000

3200

43

Dijkstra: Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of

space

• Priority Queue: O(|E|)
• Each edge takes up constant amount of space

• Map: O(|V|)
• Result: O(|V| + |E|)
• Optimal in Big-O sense!

44

Dijkstra : Time Complexity

Assume Map ops are O(1) time
Across all iterations of outer while loop
• Edges are added to and removed from the

priority queue
• But any edge is added/removed at most once!
• Total PQ operation cost is O(|E| log |E|) time

• Which is O(|E| log |V|) time
– Since log |E| < log |V|2 = 2 log |V|

• All other operations take constant time

• Thus time complexity is O(|V| + |E| log |V|)

45

Summary & Observation

Dijkstra's Algorithm is a highly efficient method
for solving shortest path problems
• Employs a relatively simple greedy algorithm

• A variant of this algorithm used to be the
method used for routing internet traffic

• Faster algorithms are much more complex
• Uses Priority Queue to avoid sorting
• Works on undirected graphs, too
Like this kind of thing? Consider Csci 256!

