CSCI 136
 Data Structures \& Advanced Programming

Shortest Paths in Weighted Graphs
(Dijkstra's Algorithm)

Shortest Paths With Edge Weights

The Problem
Input:

- A directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- A non-negative length for each edge
- Vertices s, vin V

Output:

- A shortest path from s to v
- Path length: sum of lengths of edges on path

Single Source Shortest Paths

Appears to not be any simpler than finding shortest paths from s to every vertex reachable from s!
So....

The Problem
Input:

- A directed graph $G=(V, E)$
- A non-negative length for each edge
- A vertex sin V

Output:

- Shortest paths from s to every vertex reachable from s

All Pairs Shortest Paths

The Setup: Graph $G=(V, E)$ for which each edge e in E has an edge weight $\mathrm{w}(\mathrm{e})$.

- It's tradition: We say edge weights, not edge lengths

The Problem: Compute shortest paths between each pair of vertices.

- It's tradition: We say shortest paths, not lightest-weight paths

Idea: For each vertex s, find shortest paths from s to every other vertex reachable from s

- Used for transportation, communication, and other networks
- The graph can be directed or undirected
- For specificity, we'll work with directed graphs

Single Source Shortest Paths

What does such a set of directed paths look like?

- Suppose we have a set shortest paths $\left\{\mathrm{P}_{\mathrm{u}}: \mathrm{u} \neq \mathrm{s}\right\}$, where P_{u} is a shortest path from s to u
- There's a path P_{u} for each vertex u reachable from s
- Let H be the subgraph of G consisting of each vertex of G along with the edges in each P_{u}
- What can we say about H?
- In example, it looked like a directed tree
- Is that always the case?

Aside : An Optimality Property

Let P_{u} be a shortest path from s to u

- Write P_{u} as , given by $s=v_{0}, v_{1}, \ldots, v_{k}=u$
- We can ignore edges in our notation: each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ is an edge
- Consider any portion $v_{i}, v_{i+1}, \ldots, v_{j}$ of the path.
- Claim: $v_{i}, v_{i+1}, \ldots, v_{j}$ must be a shortest path from v_{i} to v_{j}
- If there were a shorter path P^{\prime} from v_{i} to v_{j}, we could replace $v_{i}, v_{i+1}, \ldots, v_{j}$ in P with P^{\prime}
- But this is a shorter path from v to u
- Contradiction!

So: Sub-paths of shortest paths must be shortest paths

Single Source Shortest Paths

Claim: There always exists a family of shortest paths that forms a tree (ignoring edge directions) Proof:

- Suppose, for each vertex u reachable from s, we have a shortest path P_{u} from s to u
- Let H be the subgraph of G consisting of the vertices and edges in each P_{u}
- H is the set of vertices reachable (in G) from s
- If some vertex u has in-degree greater than I, we can drop one of the incoming edges

Single Source Shortest Paths

If some vertex u has in-degree greater than I, we can drop one of the incoming edges

- If there are two edges entering u, then one of them must be from P_{u} and the other from P_{v}, for some v
- So the initial portions of those paths from s to u must both have the same weight!
- Recall: Subpaths of shortest paths are shortest paths
- So, replacing the portion of, say P_{v} from s to u with P_{u} gives a new shortest path from s to v.
- So: The edge of P_{v} entering u can be dropped from H
- But no other edge of P_{v} can be dropped!

Single Source Shortest Paths

Claim: H can't have any directed cycles

- Well, s can't be on any cycles (in-deg(v) $=0$)
- Otherwise, s appeared as a vertex somewhere along one of the paths P_{u}
- But then P_{u} can't be a shortest path from s to u
- If there were a cycle, some vertex on it would have in-degree > I
- Since s is not on the cycle, There must be a path from s to some vertex u on the cycle.
- But then u has indegree $>$ I

Single Source Shortest Paths

In fact, even disregarding edge directions, there would be no cycles

- Some vertex would have in-degree at least 2
- Or else there's a directed cycle (Why?)
- So, we can assume that there is some set of shortest paths that forms a (directed) tree
- Dijkstra's Algorithm: Greedily grow such a tree
- The question is: How?

Single Source Shortest Paths

In fact, even disregarding edge directions, there would be no cycles

- Some vertex would have in-degree at least 2

- Or else there's a directed cycle

So, the paths form a directed tree with root v !

Single Source Shortest Paths

Thus: There always exists a family of shortest paths that forms a tree (ignoring edge directions)

Dijkstra's algorithm grows a tree T of shortest paths from s to every vertex reachable from s

- Begins with T just containing s
- Repeatedly adds a new vertex and edge to T
- At all times, T consists of shortest paths (in G) from s to every other vertex of T
- Next vertex/edge is selected greedily

Dijkstra Shortest Paths Tree

The Tree of Shortest Paths Found by Dijkstra's Algorithm

The Right Kind of Greed

- A start: take shortest edge from start vertex s
- That must be a shortest path!
- And now we have a small tree of shortest paths
- What next?
- Design an algorithm thinking inductively
- Suppose we have found a tree T_{k} that has shortest paths from s to the k-I vertices "closest" to s
- What vertex would we want to add next?

Finding the Best Vertex to Add to T_{k}

Not all edges are displayed
Question: Can we find the next closest vertex to s?

What's a Good Greedy Choice?

Idea: Pick edge e from u in T_{k} to v in G- T_{k} that minimizes the length of the tree path from s up to-and through-e

Now add v and e to T_{k} to get tree $\mathrm{T}_{\mathrm{k}+1}$

Now T_{k+1} is a tree consisting of shortest paths from s to the k vertices closest to s ! [Proof?] Repeat until $\mathrm{k}=|\mathrm{V}|$

Some Notation Reminders

- I(e) : length (weight) of edge e
- $\mathrm{d}(\mathrm{u}, \mathrm{v})$: distance from u to v
- Length of shortest path from u to v
- The priority queue stores an estimate of the distance from s to w by storing, for edge $(v, w), d(s, v)+l(v, w)$
- The estimate is always an upper bound on $\mathrm{d}(\mathrm{s}, \mathrm{w})$

Dijkstra: Data Structures

- Map: Store the tree T of shortest paths
- Key is a vertex label v
- Value is edge of T having v as destination vertex
- From this we can find path in T from s to v
- Priority Queue: Store edges (v, w) with current approximate distance
- As Comparable Association(Key,Value) where
- Key is $d(s, v)+l(v, w)$: The estimated distance from s to w
- Value is the edge $e=(v, w)$
- The PQ will always contain all edges from vertices of T to vertices not in T
- As well as some vestigal edges with both ends in T

Dijkstra's Algorithm

Dïkstra $(G, s) / / l(e)$ is the length of edge e let $T \leftarrow(\{s\}, \emptyset)$ and $P Q$ be an empty priority queue for each neighborv ofs, add edge (s, v) to $P Q$ with priority $l(e)$ while T doesn't have all vertices of G and $P Q$ is non-empty
repeat
$e \leftarrow P Q$. .removeMin() // skip edges with both ends in T until $P Q$ is empty or $=(u, v)$ for $u \in T, v \notin T$
if $e=(u, v)$ for $u \in T, v \notin T$
adde (andv) to T
for each neighbor w ofv
add edge (v, w) to $P Q$ with weight/key $d(s, v)+l(v, w)$

Dijkstra's Algorithm

Priority Queue

Priority Queue

Current: 500 SF->Port (need to add Port's neighbors to PQ)
$\leadsto \underset{1000}{\text { SF->Den; }} \begin{aligned} & \text { SF->Dal } \\ & 1500\end{aligned}$

Current: 500 SF->Port

Current: 600 SF->Port->Sea

Current: 600 SF->Port->Sea

\Longrightarrow| SF->Den; | SF->Dal; | SF->Port->Sea->Bos
 I000 |
| :--- | :--- | :--- |
| | 1500 | 3400 |

Current: 1000 SF->Den
\Rightarrow
SF->Dal
SF->Port->Sea->Bos
1500
3400

Current: 1000 SF->Den
\Rightarrow SF->Dal; 1500

SF->Den->Dal;
1700

SF->Den->Chi; 1900

SF->Port->Sea->Bos 3400

Current: I500 SF->Dal

\Rightarrow SF->Den->Dal;	SF->Den->Chi;	SF->Port->Sea->Bos
I700	1900	3400

Current: I500 SF->Dal

\Rightarrow| SF->Den->Dal; | SF-->Den->Chi; | SF->Dal->Atl; | SF->Dal->LA; | SF--PPort->Sea->Bos |
| :--- | :--- | :--- | :--- | :--- |
| I700 | 1900 | 2200 | 2700 | 3400 |

Current: I700 SF->Den->Dal (we already have Dallas!)

\Rightarrow| SF->Den->Chi; | SF->Dal->Atl; | SF->Dal->LA; | SF->Port->Sea->Bos |
| :--- | :--- | :--- | :--- |
| 1900 | 2200 | 2700 | 3400 |

Current: 1900 SF->Den->Chi

Current: 1900 SF->Den->Chi
$\Longrightarrow \underset{2200}{\text { SF->Dal->Atl; }}$

SF->Den->Chi->At;
SF->Dal->LA;
SF->Port->Sea->Bos 2700 3400

Current: 2200 SF->Dal->Atl
\Rightarrow SF->Den->Chi->Atl;
2500 SF->Dal->LA;
SF->Port->Sea->Bos 3400

Current: 2200 SF->Dal->Atl
\longrightarrow SF->Den->Chi->Atl;
2500 SF->Dal->LA;
2700
SF->Dal->Atl->NY;
SF->Port->Sea->Bos 3000 3400

Current: 2500 SF->Den->Chi->At|

\Rightarrow| SF->Dal->LA; | SF->Dal->Atl->NY; | SF->Port->Sea->Bos |
| :--- | :--- | :--- |
| 2700 | 3000 | 3400 |

Current: 3000 SF->Dal->Atl->NY
$\Longrightarrow \begin{aligned} & 3400 \\ & \text { SF->Port->Sea->Bos } \\ & 3\end{aligned}$

Current: 3000 SF->Dal->Atl->NY
\square
SF->Dal->Atl->NY->Bos;
3200 SF->Port->Sea->Bos
3400

Current: 3200 SF->Dal->Atl->NY->Bos
$\Longrightarrow \begin{aligned} & \text { SF->Port->Sea->Bos } \\ & 3400\end{aligned}$

Dijkstra: Space Complexity

- Graph: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Each vertex and edge uses a constant amount of space
- Priority Queue: O(|E|)
- Each edge takes up constant amount of space
- Map: $\mathrm{O}(|\mathrm{V}|)$
- Result: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Optimal in Big-O sense!

Dijkstra : Time Complexity

Assume Map ops are $\mathrm{O}(\mathrm{I})$ time
Across all iterations of outer while loop

- Edges are added to and removed from the priority queue
- But any edge is added/removed at most once!
- Total PQ operation cost is $\mathrm{O}(|E| \log |E|)$ time
- Which is $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$ time
- Since log $|\mathrm{E}|<\log |\mathrm{V}|^{2}=2 \log |\mathrm{~V}|$
- All other operations take constant time
- Thus time complexity is $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$

Summary \& Observation

Dijkstra's Algorithm is a highly efficient method for solving shortest path problems

- Employs a relatively simple greedy algorithm
- A variant of this algorithm used to be the method used for routing internet traffic
- Faster algorithms are much more complex
- Uses Priority Queue to avoid sorting
- Works on undirected graphs, too

Like this kind of thing? Consider Csci 256!

