
CSCI 136
Data Structures &

Advanced Programming

Shortest Paths in Weighted Graphs
(Dijkstra's Algorithm)
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Shortest Paths With Edge Weights

The Problem
Input: 
• A directed graph G=(V,E)
• A non-negative length for each 

edge
• Vertices s, v in V
Output: 
• A shortest path from s to v

• Path length: sum of lengths
of edges on path
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Single Source Shortest Paths

The Problem
Input: 
• A directed graph G=(V,E)
• A non-negative length for each 

edge
• A vertex s inV
Output: 
• Shortest paths from s to every 

vertex reachable from s

Appears to not be any simpler than finding shortest paths 
from s to every vertex reachable from s!
So….
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All Pairs Shortest Paths
The Setup: Graph G=(V,E) for which each edge e in E has 
an edge weight w(e).

• It's tradition: We say edge weights, not edge lengths

The Problem: Compute shortest paths between each pair 
of vertices.

• It's tradition: We say shortest paths, not lightest-weight paths

Idea: For each vertex s, find shortest paths from s to every 
other vertex reachable from s

• Used for transportation, communication, and other networks

• The graph can be directed or undirected
• For specificity, we'll work with directed graphs
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Single Source Shortest Paths

What does such a set of directed paths look like?
• Suppose we have a set shortest paths {Pu : u≠s}, 

where Pu is a shortest path from s to u
• There's a path Pu for each vertex u reachable from s

• Let H be the subgraph of G consisting of each 
vertex of G along with the edges in each Pu

• What can we say about H?
• In example, it looked like a directed tree

• Is that always the case?
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Aside : An Optimality Property

Let Pu be a shortest path from s to u
• Write Pu as , given by s = v0, v1, …, vk = u

• We can ignore edges in our notation: each (vi,vi+1) is an edge

• Consider any portion vi, vi+1, …, vj of the path.
• Claim: vi, vi+1, …, vj must be a shortest path from vi to vj
• If there were a shorter path P' from vi to vj, we could 

replace vi, vi+1, …, vj in P with P'
• But this is a shorter path from v to u

• Contradiction!

So: Sub-paths of shortest paths must be shortest paths
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Single Source Shortest Paths
Claim: There always exists a family of shortest 
paths that forms a tree (ignoring edge directions)
Proof: 
• Suppose, for each vertex u reachable from s, 

we have a shortest path Pu from s to u
• Let H be the subgraph of G consisting of the 

vertices and edges in each Pu
• H is the set of vertices reachable (in G) from s

• If some vertex u has in-degree greater than 1, 
we can drop one of the incoming edges
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Single Source Shortest Paths
If some vertex u has in-degree greater than 1, we can 
drop one of the incoming edges

• If there are two edges entering u, then one of them 
must be from Pu and the other from Pv, for some v

• So the initial portions of those paths from s to u must 
both have the same weight!
• Recall: Subpaths of shortest paths are shortest paths

• So, replacing the portion of, say Pv from s to u with Pu
gives a new shortest path from s to v.
• So: The edge of Pv entering u can be dropped from H 

• But no other edge of Pv can be dropped!
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Single Source Shortest Paths

Claim: H can’t have any directed cycles
• Well, s can’t be on any cycles (in-deg(v) = 0)

• Otherwise, s appeared as a vertex somewhere along one 
of the paths Pu

• But then Pu can't be a shortest path from s to u

• If there were a cycle, some vertex on it would have 
in-degree > 1
• Since s is not on the cycle, There must be a path from s to 

some vertex u on the cycle.

• But then u has indegree > 1
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Single Source Shortest Paths
In fact, even disregarding edge directions, there 
would be no cycles
• Some vertex would have in-degree at least 2
• Or else there’s a directed cycle (Why?)

• So, we can assume that there is some set of 
shortest paths that forms a (directed) tree

• Dijkstra’s Algorithm: Greedily grow such a tree
• The question is: How?
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Single Source Shortest Paths

In fact, even disregarding 
edge directions, there 
would be no cycles
• Some vertex would have 

in-degree at least 2

• Or else there’s a directed 
cycle

So, the paths form a directed tree with root v!
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Single Source Shortest Paths
Thus: There always exists a family of shortest 
paths that forms a tree (ignoring edge directions)

Dijkstra's algorithm grows a tree T of shortest 
paths from s to every vertex reachable from s
• Begins with T just containing s
• Repeatedly adds a new vertex and edge to T
• At all times, T consists of shortest paths (in G) 

from s to every other vertex of T

• Next vertex/edge is selected greedily
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Dijkstra Shortest Paths Tree
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The Right Kind of Greed

• A start: take shortest edge from start vertex s
• That must be a shortest path!
• And now we have a small tree of shortest paths

• What next?
• Design an algorithm thinking inductively
• Suppose we have found a tree Tk that has shortest 

paths from s to the k-1 vertices “closest” to s
• What vertex would we want to add next?
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Finding the Best Vertex to Add to Tk

Not all edges are displayed

Question: Can we find the next closest vertex to s?
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What’s a Good Greedy Choice?

Idea: Pick edge e from 
u in Tk to v in G-Tk that 
minimizes the length 
of the tree path from s 
up to–and through–e

Now add v and e to Tk
to get tree Tk+1

Now Tk+1 is a tree consisting of shortest paths from s to the 
k vertices closest to s!  [Proof?] Repeat until k = |V|
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Some Notation Reminders

• l(e) : length (weight) of edge e
• d(u,v) : distance from u to v

• Length of shortest path from u to v

• The priority queue stores an estimate of the distance from 
s to w by storing, for edge (v,w), d(s,v) + l(v,w)

• The estimate is always an upper bound on d(s,w)
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Dijkstra: Data Structures
• Map: Store the tree T of shortest paths
• Key is a vertex label v
• Value is edge of T having v as destination vertex

• From this we can find path in T from s to v

• Priority Queue: Store edges (v,w) with current 
approximate distance 
• As Comparable Association(Key,Value) where

• Key is d(s,v) + l(v,w) : The estimated distance from s to w

• Value is the edge e=(v,w)

• The PQ will always contain all edges from vertices 
of T to vertices not in T
• As well as some vestigal edges with both ends in T
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Dijkstra’s Algorithm
Dijkstra(G, s)  // l(e) is the length of edge e
let Tß({s}, ∅)  and PQ be an empty priority queue
for each neighbor v of s, add edge (s,v) to PQ with priority l(e)
while T doesn’t have all vertices of G and PQ is non-empty

repeat
e ß PQ.removeMin()   // skip edges with both ends in T

until  PQ is empty or e=(u,v) for u∈T, v ∉ T
if  e=(u,v) for u∈T, v ∉ T

add e (and v) to T
for each neighbor w of v

add edge (v,w) to PQ with weight/key d(s,v) + l(v,w)
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Dijkstra: Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of 

space

• Priority Queue: O(|E|)
• Each edge takes up constant amount of space

• Map: O(|V|)
• Result: O(|V| + |E|)
• Optimal in Big-O sense!
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Dijkstra : Time Complexity

Assume Map ops are O(1) time
Across all iterations of outer while loop
• Edges are added to and removed from the 

priority queue
• But any edge is added/removed at most once!
• Total PQ operation cost is O(|E| log |E|) time

• Which is O(|E| log |V|) time
– Since log |E| < log |V|2 = 2 log |V|

• All other operations take constant time

• Thus time complexity is O(|V| + |E| log |V|)
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Summary & Observation

Dijkstra's Algorithm is a highly efficient method 
for solving shortest path problems
• Employs a relatively simple greedy algorithm

• A variant of this algorithm used to be the 
method used for routing internet traffic

• Faster algorithms are much more complex
• Uses Priority Queue to avoid sorting
• Works on undirected graphs, too
Like this kind of thing? Consider Csci 256!


