
CSCI 136
Data Structures &

Advanced Programming

Describing Graphs



2

Describing Graphs
There are many ways to describe a graph G = (V,E) 

(other than by drawing a picture)
• A list of all vertices followed by a list of all edges

• Note; If every vertex is incident to at least one edge, the 
list of vertices can be inferred from the list of edges

• A matrix (2-dimensional array) M such that
• Each row of M corresponds to a vertex v
• Each column of M corresponds to an edge e

• If v is incident with e, entry M[v,e] = 1; else M[v,e] = 0
• M is called the incidence matrix of the graph

• Note the abuse of notation M[v,e]
• Neither v nor e might be ints---but we could encode them as ints!



3

Describing Graphs
The two most frequently used approaches are
• The Adjacency Matrix A of the graph G = (V,E)
• Each row of A corresponds to a vertex of G
• Each column of A corresponds to a vertex of G

• A(u,v) = 1 if {u,v} is in E; A(u,v) = 0 otherwise

• The Adjacency Lists AL of the graph G = (V,E)
• AL is a 1-dimensional array indexed by V
• The entry AL[v] is a list of all neighbors of v

• If G is directed, AL[v] is a list of all out-neighbors of v

• Again: We encode vertices as ints



4

Adjacency Array: Directed Graph

Entry (i,j) stores 1 if there is an edge from i to j; 0 otherwise
For example: edges(B,C) = 0 but edges(C,B) = 1

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 0 0 0 1 0 0 1 1

C 0 1 0 1 0 0 0 0

D 0 0 0 0 0 0 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 0 0

G 0 0 0 0 0 1 0 0

H 0 0 0 0 1 0 0 0



5

Adjacency Array: Undirected Graph

Entry (i,j) store 1 if there is an edge between i and j; else 0
For example: edges(B,C) = 1 = edges(C,B)

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 1 0 1 1 0 0 1 1

C 1 1 0 1 0 1 0 0

D 0 1 1 0 1 1 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 1 0

G 1 1 0 0 0 1 0 0

H 1 1 0 0 1 0 0 0



6

Adjacency List : Directed Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges having a given source



7

Adjacency List : Undirected Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges incident to a given vertex



8

Graph Data Structures

What we want

• Represent both directed and undirected graphs

• Have option of array-based or list-based
• Lists are more compact for sparse graphs (few edges)

• Ability to store application-specific data at vertices and 

edges

• Most frequently used methods are most efficient
• Spoiler: Implementations will have different performance 

characteristics



9

Graph Classes in structure5



10

Graph Classes in structure5

Why so many?!

• There are two types of graphs: undirected & directed

• There are two implementations: arrays and lists

• We want to be able to avoid large amounts of identical 

code in multiple classes

• We abstract out features of implementation common to 

both directed and undirected graphs

These implementations will be the focus of the next few 

presentations….


