CSCI 136
Data Structures &
Advanced Programming

Describing Graphs

Describing Graphs

There are many ways to describe a graph G = (V,E)
(other than by drawing a picture)

e A list of all vertices followed by a list of all edges

* Note; If every vertex is incident to at least one edge, the
list of vertices can be inferred from the list of edges

e A matrix (2-dimensional array) M such that
e Each row of M corresponds to a vertex v
e Each column of M corresponds to an edge e
e If vis incident with e, entry M[v,e] = [; else M[v,e] =0
* Mis called the incidence matrix of the graph

Note the abuse of notation M[v,e]

* Neither v nor e might be ints---but we could encode them as ints! ,

Describing Graphs

The two most frequently used approaches are
* The Adjacency Matrix A of the graph G = (V,E)

e Each row of A corresponds to a vertex of G
e Each column of A corresponds to a vertex of G
* A(uyv) = | if {u,v}isin E; A(u,v) = 0 otherwise

* The Adjacency Lists AL of the graph G = (V,E)
* AL is a |-dimensional array indexed by V

* The entry AL[v] is a list of all neighbors of v

e If G is directed, AL[v] is a list of all out-neighbors of v

* Again: We encode vertices as ints

Adjacency Array: Directed Graph
O

Al [c[p]e [F [c[H

0"0 AlO |1 |1 |00 |0 [I |I
B (oo o |1]o]o |1]l

‘ cloi]o]i]ololo]o
’e plo oo |o]o]o|o]o

() E (oo o |1]o]o o]l
Flofo |1 |r]ololo]o

0‘ Ggloololo]o]I [o]o
O Hlo oo o1 o o]0

Entry (i,j) stores 1 if there is an edge from i to j; 0 otherwise
For example: edges(B,C) = 0 but edges(C,B) = 1

Adjacency Array: Undirected Graph

A|B|C|D|E |F |G|H
Ao |l (I [0 (O[O |I |I
B (I (O (I (I (O[O |I |I
cC(i |rjo {1t (oijf1 (0|0
Do (I (I (O (I [I {0 |O
E |0 |0 |O (I (O |0 |0 |I
F 10 {0 |l (I (OO I |O
G(I |I |]O |0 O (I (OO
Hi|l {lI {0 {0 (Il |[O |0 |O

Entry (i,j) store 1 if there is an edge between i and j; else 0
For example: edges(B,C) = 1 = edges(C,B)

Adjacency List : Directed Graph

A —>» B| >»C| F>»Gc| >
B —>» D| > G| F>H

C —>» B| > D

D

E —>» D| > H

F —>»(C| —>»D

G —>{ F

H —>(E

The vertices are stored in an array V][]
V[] contains a linked list of edges having a given source

Adjacency List : Undirected Graph

A > B| >cC > G > H

B| —>A| >»c| —>D > G| >{H
C > A| >8] D > F

D > B > C > E > F

E » D > H

F| —>»c| >»D| F>¢

G| —>A| >B| H>F

H > A| > B > E

The vertices are stored in an array V][]
V[] contains a linked list of edges incident to a given vertex

Graph Data Structures

What we want

Represent both directed and undirected graphs

Have option of array-based or list-based

e Lists are more compact for sparse graphs (few edges)

Ability to store application-specific data at vertices and
edges

Most frequently used methods are most efficient

e Spoiler: Implementations will have different performance

characteristics

Graph Classes in structure5

Interface

Graph

GraphMatrix

Abstract Class

Structure

| >< |

AN

GraphMatrixDirected GraphMatrixUndirected

Class

AbstractStructure

GraphlList

GraphlListDirected

Vertex

RN

GraphMatrixVertex

GraphlListVertex

Edge

GraphListUndirected

Graph Classes in structure5

Why so many?!

e There are two types of graphs: undirected & directed

e There are two implementations: arrays and lists

 We want to be able to avoid large amounts of identical
code in multiple classes

 We abstract out features of implementation common to
both directed and undirected graphs

These implementations will be the focus of the next few

presentations....

