CSCI 136
 Data Structures \&
 Advanced Programming

Describing Graphs

Describing Graphs

There are many ways to describe a graph $G=(V, E)$ (other than by drawing a picture)

- A list of all vertices followed by a list of all edges
- Note; If every vertex is incident to at least one edge, the list of vertices can be inferred from the list of edges
- A matrix (2-dimensional array) M such that
- Each row of M corresponds to a vertex v
- Each column of M corresponds to an edge e
- If v is incident with e , entry $\mathrm{M}[\mathrm{v}, \mathrm{e}]=\mathrm{I}$; else $\mathrm{M}[\mathrm{v}, \mathrm{e}]=0$
- M is called the incidence matrix of the graph
- Note the abuse of notation M[v,e]
- Neither v nor e might be ints---but we could encode them as ints!

Describing Graphs

The two most frequently used approaches are

- The Adjacency Matrix A of the graph $G=(V, E)$
- Each row of A corresponds to a vertex of G
- Each column of A corresponds to a vertex of G
- $A(u, v)=1$ if $\{u, v\}$ is in $E ; A(u, v)=0$ otherwise
- The Adjacency Lists AL of the graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- AL is a I -dimensional array indexed by V
- The entry $\mathrm{AL}[\mathrm{v}]$ is a list of all neighbors of v
- If G is directed, $\mathrm{AL}[\mathrm{v}]$ is a list of all out-neighbors of v
- Again: We encode vertices as ints

Adjacency Array: Directed Graph

	A	B	C	D	E	F	G	H
A	0	I	I	0	0	0	I	I
B	0	0	0	I	0	0	I	I
C	0	I	0	I	0	0	0	0
D	0	0	0	0	0	0	0	0
E	0	0	0	I	0	0	0	I
F	0	0	I	I	0	0	0	0
G	0	0	0	0	0	I	0	0
H	0	0	0	0	I	0	0	0

Entry (i, j) stores 1 if there is an edge from i to $\mathrm{j} ; 0$ otherwise
For example: edges $(B, C)=0$ but edges $(C, B)=1$

Adjacency Array: Undirected Graph

	A	B	C	D	E	F	G	H
A	0	I	I	0	0	0	I	I
B	I	0	I	I	0	0	I	I
C	I	I	0	I	0	I	0	0
D	0	I	I	0	I	I	0	0
E	0	0	0	I	0	0	0	I
F	0	0	I	I	0	0	I	0
G	I	I	0	0	0	I	0	0
H	I	I	0	0	I	0	0	0

Entry (i, j) store 1 if there is an edge between i and j ; else 0
For example: edges(B,C) =1 = edges(C,B)

Adjacency List : Directed Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges having a given source

Adjacency List : Undirected Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges incident to a given vertex

Graph Data Structures

What we want

- Represent both directed and undirected graphs
- Have option of array-based or list-based
- Lists are more compact for sparse graphs (few edges)
- Ability to store application-specific data at vertices and edges
- Most frequently used methods are most efficient
- Spoiler: Implementations will have different performance characteristics

Graph Classes in structure5

Interface
Abstract Class
Class

Edge

Graph Classes in structure5

Why so many?!

- There are two types of graphs: undirected \& directed
- There are two implementations: arrays and lists
- We want to be able to avoid large amounts of identical code in multiple classes
- We abstract out features of implementation common to both directed and undirected graphs
These implementations will be the focus of the next few presentations....

