
CSCI 136
Data Structures &

Advanced Programming

Conditions & Assertions
Fall 2020

// Pre: instructor.name().equals("Bill")



Program Correctness Aids



Error Detection
Two types: Compile-time and Run-time
• Compiler error checking
• Syntax errors
• Type errors (but not all of them)

• Java is statically typed: Variables must have type declared
– Allows much more extensive compile-time type checking

• Run-time error checking
• Type errors

• E.g.: Passing incorrect type to equals()

• Logic errors
• E.g.: Division by 0



Code Documentation
Code should be well-documented
• Clear description of correct usage
For methods, this should include
• Description of expectations
• What information should be passed to parameters

• Constraints on that information

• Description of effects of executing method
• Effects on object on which method was invoked
• Effects on parameters

• Other effects



Pre and Post Conditions

A widely used documentation convention
Example:
/* Compute the square root of a number
* Pre: x is non-negative
* Post: return value is non-negative 
* square root of x
*/
public static double sqrt(double x) { 

… 
}



Pre and Post Conditions

Example
• Recall charAt(int index) in Java String class
• What are the pre-conditions for charAt?

• 0 <= index < length()

• What are the post-conditions?
• Method returns char at position index in string

• Expectation: Use in your methods as appropriate
/* pre: 0 ≤ index < length
* post: returns char at position index
*/

public char charAt(int index) { … }



Other Examples

Pre-conditions are often used to avoid error-checking 
code in frequently executed methods
Ex. Equality-testing
• instead of using instanceof check

// Pre: other is of type Card

// Post: Returns true if suits and ranks match
public boolean equals(Object other) {

Card oc = (Card) other;

return this.getRank() == oc.getRank() &&

this.getSuit() == oc.getSuit();

}



Pre and Post Conditions

• Pre and post conditions “form a contract”
• If pre-condition is true when method is invoked
• Then Post-condition holds when method returns

• These conditions document requirements that 
user of method should satisfy

• But, as comments, they are not enforced



Assert Class

• Pre- and post-condition comments are 
important for documenting code.

• It would be better in some cases to check that 
a pre-condition was violated.

• Program could then
• Catch error and gracefully halt
• Provide helpful error message

• The Assert class (in structure5 package) 
supports this goal



Assert Class

The Assert class contains the methods
public static void pre(boolean test, String message);

public static void post(boolean test, String message);

public static void condition(boolean test, String message);

public static void fail(String message);

If the boolean test is NOT satisfied, an exception is raised, 
the message is printed and the program halts. That is:

• The test is a condition we desire to be true

• The message is printed if the condition is false



Assert Examples

The Vector class uses Assert in many places
// Pre: initialCapacity >= 0
public Vector(int initialCapacity) {

Assert.pre(initialCapacity >= 0,"Capacity 
must not be negative");

// Pre: 0 <= index && index < size()
public E elementAt(int index) {

Assert.pre(0 <= index && index < size(),"index 
is within bounds");

Note: Asserts and pre/post conditions serve different purposes

• Pre/Post conditions document usage constraints to user

• Asserts perform run-time checks ensuring that conditions are met



General Rules about Assert

• State pre/post conditions in comments
• Check conditions in code using Assert class
• or Java's assert keyword

• Use Assert.fail() in unexpected cases
• E.g.: In the default block of certain switch 

statements

• Note: They are always active
• Java's assert check can be disabled at runtime



The Java assert keyword

• An alternative to Duane’s Assert class
• Added in Java 1.4
• Two variants

• assert boolean_expression

• Throws an AssertionError if the expression is false 
• assert boolean_expression : other_expression

• In addition, prints value of other_expression

• By default, assert statements are ignored
• Turn them on with –ea flag
• Usage: java –ea MyJavaClass



Summary

• Pre-conditions specify conditions required for 
successful method execution

• Post-conditions specify effects of method 
assuming pre-conditions are satisfied

• They are documentation elements
• Assertions are run-time checks

• Checks that condition is satisfied
• Two options: Assert class or Java's assert keyword

• Your code should use these tools!


