
CSCI 136
Data Structures &

Advanced Programming

Bitwise Operations

2

Today’s Outline

• Bit operations
• Useful for data structures in general

• BIterator.java: an iterator for
enumerating the individual bits in the binary
representation of an Integer

3

Representing Numbers

Humans usually think of numbers in base 10

• E.g.: 3,470,265, -4312, 0
3470265 is shorthand for

3 " 10! + 4 " 10" + 7 " 10# + 0 " 10$ + 2 " 10% + 6 " 10& + 5 " 10&

• Each power of 10 has a coefficient in range 0-9
• A "digit"

• Negative numbers have a distinguishing mark "-"
• A "carry" happens when two digits sum to

more than 9

4

Representing Numbers

But we could do this with powers of any integer

Ex: Base 2 (binary)
• Powers of 2 instead of powers of 10
• Only two "digits" (bits): 0 and 1

147'& = 128'& + 16'& + 2'& + 1'& =

1 ∗ 2(+ 0 " 2! + 0 " 2" + 1 " 2# + 0 " 2$ + 0 " 2% + 1 " 2' + 1 " 2&

= 10010011%

• So, 147!" = 10010011#

5

Representing Numbers in Hardware

Hardware stores numbers as fixed width values
• Every value has same number of bits (say 32 or 64)
• Ex: 23!" = 10111# has form

• 00000000 00000000 00000000 00010111

In lab, we converted from base 10 to base 2

public static String numInBinary(int n) {
if (n <= 1)

return "" + n%2;

return printInBinary(n/2) + n%2;
}

6

numInBinary(int n)

• What was our strategy for writing (recursive)
printInBinary?
• Use mod to isolate the least significant bit

• Divide by 2 and recurse

public static String numInBinary(int n) {
if (n <= 1)

return "" + n%2;

return printInBinary(n/2) + n%2;
}

7

Bitwise Operations

• We can use bitwise operations to manipulate
the 1s and 0s in the binary representation:
• Bitwise ‘and’: &

• b1 & b2 is 1 if b1=b2=1 and 0 otherwise

• Bitwise ‘or’: |
• b1 | b2 is 0 if b1=b2=0 and 1 otherwise

• Also useful: bit shifts
• Bit shift left: << (fills 'holes' on left with 0s)
• Bit shift right: >> (fills 'holes' on right with 0s)

8

& and |

• Given two integers a and b, the bitwise or
expression a | b returns an integer s.t.
• At each bit position, the result has a 1 if that bit

position had a 1 in EITHER a OR b
• 6 | 12 = ?

• Given two integers a and b, the bitwise and
expression a & b returns an integer s.t.
• At each bit position, the result has a 1 if that bit

position had a 1 in BOTH a AND b
• 6 & 12 = ?

0110 | 1100 = 1110

0110 & 1100 = 0100

9

>> and <<
• Given two integers a and i, the expression

(a << i) returns (a * 2i)
• Why? It shifts all bits left by i positions
• 1 << 4 = ?

• Given two integers a and i, the expression
(a >> i) returns (a / 2i)
• Why? It shifts all bits right by i positions
• 1 >> 4 = ?
• 97 >> 3 = ? (97 = 1100001)

• Be careful about shifting left and “overflow”!!!

00001 << 4 = 10000

00001 >> 4 = 00000

1100001 >> 3 = 1100

10

What About Negative Numbers?
With 32-bit representation we could store
values from – up to 232 – 1.
What if we want negative numbers?
Idea:
• Use highest-order/most-significant/leftmost bit

to encode sign of number
• 0 for non-negative, 1 for negative

• Example: 4-bit numbers
• 1111 is no longer 15

• It's "negative something"…but what??

11

Two's-Complement
Java stores negative values in two's-complement
representation
• Take a positive number in binary
• 2310 = 00000000 00000000 00000000 00010111

• Flip all of the bits
• 11111111 11111111 11111111 11101000

• Add 1
• 11111111 11111111 11111111 11101001

• Note: left-most bit becomes 1
• "Negative 0" equals 0

12

Revisiting numInBinary(int n)

• How would we rewrite a recursive
numInBinary using bit shifts and bitwise
operations?

public static String numInBinary(int n) {
if (n <= 1) // no non-zero digits

return "" + n;
return numInBinary(n >> 1) + (n & 1);

}

13

Revisiting numInBinary(int n)

• How would we write an iterative
printInBinary using bit shifts and bitwise
operations?

public static String printInBinary(int n,
int width) {

String result = "";
for(int i = 0; i < width; i++)

if ((n & (1<<i)) == 0)
result = 0 + result;

else
result = 1 + result;

return result;
}

14

BIterator.java

• Goal:
• Take a number n, and yield its bits (0 or 1) from

least significant bit to most significant bit
• For example, 1011 would yield: 1, 1, 0, 1

• Implementation:
• Store n
• Each next() isolates the LSB and shifts

• hasNext()?
• reset()?

