CSCI 136 Data Structures & Advanced Programming

Binary Seach Trees I

Binary Search Trees I

Ordered Structures

- Recall: Ordering the items in lists can improve search performance
- OrderedVector
- Rank (find kth smallest) takes O(I) time
- Search take O(log n) time
- OrderedList
- Rank (find kth smallest) takes O(k) time
- Search takes O(n) time
 - But faster than on unordered list

Ordered Structures

- However: Adding and removing elements from ordered structures can require $\theta(n)$ time
- OrderedVector
- Find location for new item in O(log n) time
- Insert new item can take $\boldsymbol{\theta}(n)$ time
- OrderedList
- Find location for new item can take $\theta(n)$ time
- Insert new item takes O(I) time

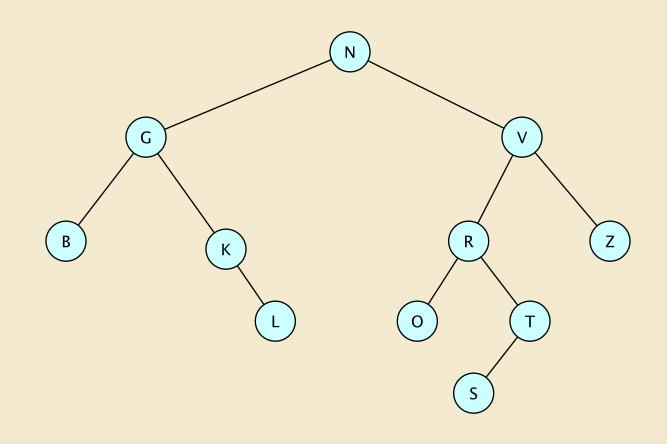
Ordered Structures

- Conclusion: Updating an ordered vector or list can require $\boldsymbol{\theta}(n)$ time
- Can we do better?
- Yes!
- Store items in a binary tree
- As long as it's carefully constructed and maintained we can improve update times
- Let's explore this further....

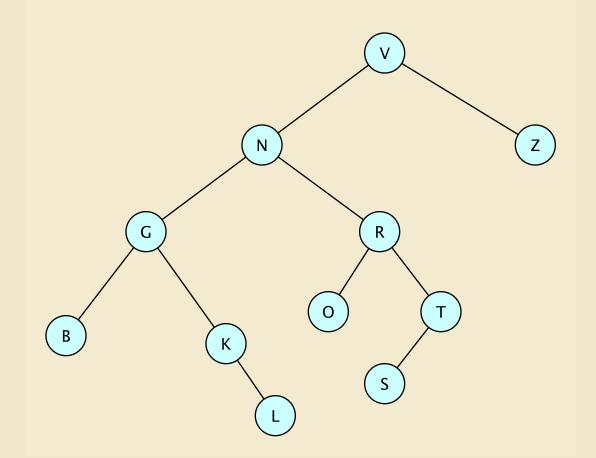
Binary Trees and Orders

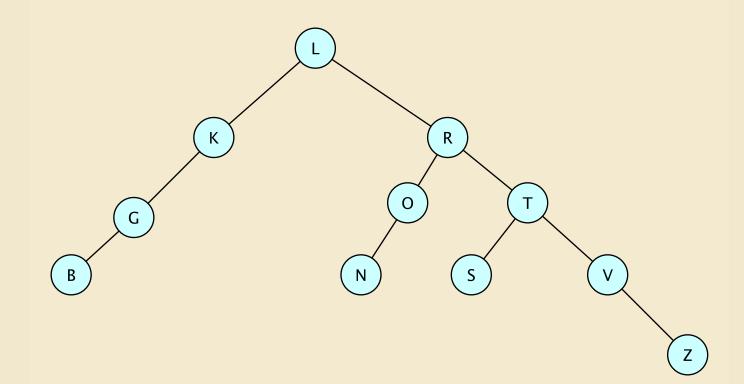
- Binary trees impose multiple orderings on their elements (pre-/in-/post-/level-orders)
- In particular, in-order traversal suggests a natural way to hold (comparable) items
 - For each node v in tree
 - All values in left subtree of v are \leq v
 - All values in right subtree of v are > v
- This leads us to...

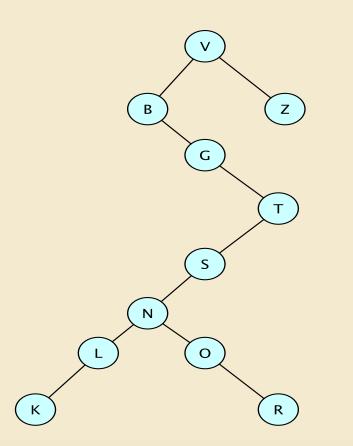
- Binary search trees maintain a total ordering among elements
- Definition: A BST T is either:
 - Empty
 - Has root r with subtrees T_L and T_R such that
 - All nodes in T_L have smaller value than r (or are empty)
 - All nodes in T_R have larger value than r (or are empty)
 - T_L and T_R are also BSTs
- Examples....

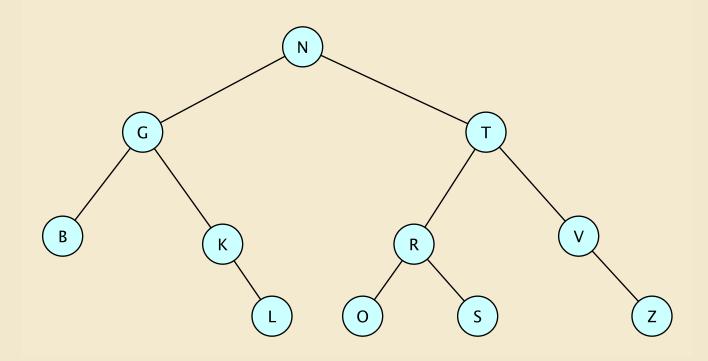


A Binary Search Tree BGKLNORSTVZ









BST Observations

- The same data can be represented by many BST shapes
- Searching for a value in a BST takes time proportional to the height of the tree
 - Reminder: trees have height, nodes have depth
- Additions to a BST happen at nodes missing at least one child (*a constraint*!)
- Removing from a BST can involve any node

BST Operations

- BSTs will implement the OrderedStructure Interface
 - We'll focus on these methods
 - add(E item)
 - contains(E item)
 - get(E item)
 - remove(E item)
 - iterator()
 - This will provide an in-order traversal
 - Also supports: size(), isEmpty(), clear(),

BST Implementation

- A BST will store a few items, including
 - A root node of type BinaryTree<E>
 - The number of nodes in the tree
 - A comparator for imposing the order
 - If not provided, a NaturalComparator<E> will be used
- Helper methods (protected) include
 - locate(BinaryTree<E> node, E value)
 - Find node in subtree having node as root
 - Or return a location where node could be added
 - predecessor(BinaryTree<E> node)
 - Find node in tree immediately preceding node in ordering
 - Also a successor() method

BST Operations

- Runtime of add, contains, get, remove will depend on runtimes of locate and predecessor methods
- Runtime of locate and predecessor will be : O(height)
- Strategy: Keep the height small
 - BinarySearchTree class doesn't attempt this...
 - But other implementations we explore will, including
 - AVL trees
 - RedBlackSearchTree
 - SplayTree
- In fact, we'll see that AVL trees and RedBlack trees maintain a height of O(log n)
 - So contains/add/remove/get all take O(log n) time!

Sample Applications

- We can use a BST to create a dictionary
 - Each node holds a ComparableAssociation
 - Nodes are compared using keys
 - Two objects are equal if keys are equal
- We can sort using a BST
 - Given any set of comparable items, insert them into a BST one by one.
 - Insert time is O(h), where h is current height of tree
 - If h_i it the height before inserting ith item, then total insert time is $O(h_1 + ... + h_n)$
 - If h is the maximum of these heights, total time is $O(h \cdot n)$

Binary Search Tree Implementation