
CSCI 136
Data Structures &

Advanced Programming

Faster Sorting Methods

Goals

Introduce Divide & Conquer algorithm design
Explore two efficient D&C sorting methods
• MergeSort
• QuickSort

2

Divide & Conquer

Binary search is efficient because
• Divides the data in half (in constant time)
• Eliminates1 one of the halves (in constant time)
So, the number of value comparisons 𝑇! needed
to search an array of size 𝑛 satisfies

𝑇! = 𝑇!
"
+ 1 and 𝑇" = 1

By induction, we can show that 𝑇! is 𝑂(log# 𝑛)
• Try this at home! [Hint: Prove it's 𝑂(1 + log! 𝑛)]
• You'll need to use strong induction

3
1 : The "conquer" step

Faster Sorting: Merge Sort

• A divide and conquer algorithm
• Typically used on arrays
• Merge sort works as follows:

• If the array is of length 0 or 1, then it is already sorted.
• Divide the unsorted array into two arrays of about half the

size of original.
• Sort smaller arrays recursively by re-applying merge sort.
• Merge the two smaller arrays back into one sorted array.

• Time Complexity?
• Spoiler Alert! We’ll see that it’s O(n log n)

• Space Complexity?
• O(n) 4

Merge Sort

6

8 14 29 1 17 39 16 9 12 3 21 11

8 14 29 1 17 39 16 9 12 3 21 11

8 14 29 1 17 39 16 9 12 3 21 11

298 14 391 17 1216 9 113 21

8 14 29 1 17 39 9 12 16 3 11 21

1 8 14 17 29 39 3 9 11 12 16 21

1 3 8 9 11 12 14 16 17 21 29 39

8 14 1 17 16 9 3 21

9 16

Merge Sort : Pseudo-code
• How would we design it?
• First pass…
// recursively mergesorts A[from .. To] “in place”
void recMergeSortHelper(A[], int from, int to)

if (from ≤ to)
mid = (from + to)/2
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
merge(A, from, to)

But merge hides a number of important details….
7

Merge Sort : An Optimization
A naive merge method creates a secondary array
• The two merged halves of the original array are

merged into the secondary array
• The secondary array is copied back into the original

array
This involves lot of array creation and moving
Instead, merge
• Uses a single secondary array
• Merges left half of original array to secondary

8

Merge Sort : Temporary Array
8 14 29 1 17 39 16 9 12 3 21 11data:

8 14 29 1 17 39temp:

mergeSort left half

8 14 29 1 17 39 16 9 12 3 21 11data:

1 8 14 17 29 39temp:

mergeSort right half

8 14 29 1 17 39 3 9 11 12 16 21data:

1 8 14 17 29 39temp:

merge

data: 1 3 8 9 11 12 14 16 17 21 29 39

Merge Sort Implementation

private static <T extends Comparable<T>> void

mergeSortRecursive(T[] data, T[] temp, int low, int high) {

int n = high-low+1;
int middle = low + n/2;
if (n < 2) return;

int i;
// move lower half of data into temporary storage
for (i = low; i < middle; i++) {

temp[i] = data[i];
}
mergeSortRecursive(temp,data,low,middle-1);
mergeSortRecursive(data,temp,middle,high);
merge(data,temp,low,middle,high);

}
10

Merge Method

private static <T extends Comparable<T>> void
merge(T[] dest, T[] using, int low, int middle, int high) {

int ri = low; // result index
int ui = low; // using index
int di = middle; // dest index
// while two lists are not empty merge smaller value
while (ui < middle && di <= high) {

if (dest[di].compareTo(using[ui]) < 0)
dest[ri++] = dest[di++]; // smaller is in high dest

else
dest[ri++] = using[ui++]; // smaller is in using

}
// possibly some values left in using array
while (ui < middle) {

dest[ri++] = using[ui++];
}

}
11

Aside: n++ vs ++n
The postfix increment (++) operator adds 1 to the value of the
variable to which it is applied

12

int n = 1;

n++; // n now has value 2
int k = n++; // k now has value 2 and n has value 3

Note that, in addition to incrementing n, it also returns the pre-
increment value of n
• That is: ++ is an operator that

• returns the value of the variable to which it is applied
• after which it increments the value of that variable

There is also a prefix version: ++n
• It first increments the value of the variable
• after which it returns the (incremented) value

k = ++n; // k now has value 4 and so does n

Merge Sort : Java Implementation
• Implementation Notes

• Note use of generics
• Note carefully how temp array is used to reduce copying
• Make sure the data is in the correct array!

• Time Complexity?
• Takes at most 2k comparisons to merge two lists of size k
• Number of splits/merges for list of size n is log n
• Claim: At most time O(n log n)…We’ll see soon...

• Space Complexity?
• O(n)?
• Need an extra array, so really O(2n)! But O(2n) = O(n)

13

Merge Sort

15

8 14 29 1 17 39 16 9 12 3 21 11

8 14 29 1 17 39 16 9 12 3 21 11

8 14 29 1 17 39 16 9 12 3 21 11

298 14 391 17 1216 9 113 21

8 14 29 1 17 39 9 12 16 3 11 21

1 8 14 17 29 39 3 9 11 12 16 21

1 3 8 9 11 12 14 16 17 21 29 39

8 14 1 17 16 9 3 21

9 16

merge takes at most n comparisons per line

log(n)
depth

Time Complexity Proof

• Prove for n = 2k (true for other n but harder)

• That is, MergeSort for performs at most

• n ∗ log (n) = 2k ∗ k comparisions of elements

• Base cases k ≤ 1: 0 comparisons: 0 < 1 ∗ 21 ✓

• Induction Step: Suppose true for all integers
smaller than k. Let T(k) be # of comparisons
for 2k elements. Then

• T(k) ≤ 2k+2∗T(k-1) ≤ 2k + 2(k-1)2k-1 ≤ k∗2k✓

16

Merge Sort

• Unlike Bubble, Insertion, and Selection sort,
Merge sort is a divide and conquer algorithm
• Bubble, Insertion, Selection sort complexity: O(n2)

• Merge sort complexity: O(n log n)

• Are there any limitations with Merge sort?
• What if we're dealing with singly-linked lists?

• Why would we ever use any other algorithm
for sorting?

17

Merge Sort for SLL

• Finding the middle element of the list takes a
linear number of steps, so does merging two
sorted lists of total length n

• So, if T(n) is the number of steps necessary to
mergeSort an n-element list then

𝑇 𝑛 ≤ 2𝑇
𝑛
2
+ 𝑐𝑛

• where 𝑐𝑛 represents the combined number of
steps for splitting the list and merging the two
halves 18

Time Complexity Proof Revisited

• Claim: For 𝑛 ≥ 1, 𝑇 𝑛 ≤ 2𝑐𝑛 log# 𝑛 + 𝑐
• Base case 𝑛 ≤ 1 : Let 𝑐 be the number of

statements in mergeSort. Then at most 𝑐
statements are executed. And 𝑐 ≤ 2𝑐 log! 1 + 𝑐✓

• Induction Step: Suppose true for all integers
smaller than 𝑛, for some 𝑛 > 1. That is,
• For all 𝑘 < 𝑛, 𝑇 𝑘 ≤ 2𝑐𝑘 log! 𝑘 + 𝑐
• Now must show: 𝑇 𝑛 ≤ 2𝑐𝑛 log! 𝑛 + 𝑐

• Recall: 𝑇 𝑛 ≤ 2𝑇 "
!
+ 𝑐𝑛

• Two recursive calls to mergeSort plus a merge 19

Time Complexity Proof Revisited

𝑇 𝑛 ≤ 2𝑇
𝑛
2
+ 𝑐𝑛

≤ 2 2𝑐 "
!
log!

"
!
+ 𝑐 + 𝑐𝑛 (by	induction)

≤ 2𝑐𝑛 log!
"
!
+ 2𝑐 + 𝑐𝑛

≤ 2𝑐𝑛 log! 𝑛 − 2𝑐𝑛 + 2𝑐 + 𝑐𝑛
= 2𝑐𝑛 log! 𝑛 − 𝑐𝑛 + 2𝑐
≤ 2𝑐𝑛 log! 𝑛 + 𝑐 + 𝑐 1 − 𝑛
≤ 2𝑐𝑛 log! 𝑛 + 𝑐 for 𝑛≥1

20

Drawbacks to Merge Sort

• Need extra temporary array
• If data set is large, this could be a problem

• Waste time copying values back and forth
between original array and temporary array

• Can we avoid this?

21

Quick Sort

• Quick sort is designed to behave much like
Merge sort, without requiring extra storage
space

Merge Sort Quick Sort

Divide list in half Partition* list into 2 parts

Sort halves Sort parts

Merge halves Join* sorted parts

22

Quick Sort

public void quickSortRecursive(Comparable data[],

int low, int high) {
// pre: low <= high
// post: data[low..high] in ascending order

int pivot;
if (low >= high) return;

/* 1 - place pivot */
pivot = partition(data, low, high);
/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+1, high);

}

23

Partition

Idea : Rearrange array so that
• First element (pivot) into its final (sorted) position
• All values smaller than pivot are to the left of pivot

• All values larger than pivot are to the right of pivot

• Return index of “pivot”

24

Partition : Pivot is 8

25

8 14 29 1 17 39 16 9 12 3 21 11

L R

8 14 29 1 17 39 16 9 12 3 21 11

L R

3 14 29 1 17 39 16 9 12 8 21 11

L R

3 8 29 1 17 39 16 9 12 14 21 11

L R

3 8 29 1 17 39 16 9 12 14 21 11

L R

3 1 29 8 17 39 16 9 12 14 21 11

L R

3 1 8 29 17 39 16 9 12 14 21 11

L=R

Partition
int partition(int data[], int left, int right) {

while (true) {
// pivot is data[left]: Compare to values on its right
while (left < right && data[left] < data[right]) right--;

if (left < right) swap(data,left++,right);
else return left;

// switch sides!

// pivot is data[right]: Compare it to values on its left
while (left < right && data[left] < data[right]) left++;

if (left < right) swap(data,left,right--);
else return right;

}
}

26

Complexity

• Time:
• Partition is O(n)
• If partition breaks list exactly in half, same as

merge sort, so O(n log n)
• If data is already sorted, partition splits list into

groups of 1 and n-1, so O(n2)

• Space:
• O(n) (so is MergSort)

• In fact, it’s n + c compared to 2n + c for MergeSort

27

Merge vs. Quick (Average Time)

0

500

1000

1500

2000

2500

3000

3500

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

MERGE

QUICK

28

Food for Thought…

• How to avoid picking a bad pivot value?
• Pick median of 3 elements for pivot (heuristic!)

• Combine selection sort with quick sort
• For small n, selection sort is faster

• Switch to selection sort when elements is <= 7
• Switch to selection/insertion sort when the list is

almost sorted (partitions are very unbalanced)
• Heuristic!

29

Sorting Wrapup
Time Space

Bubble Worst: O(n2)
Best: O(n) - if “optimized”

O(n) : n + c

Insertion Worst: O(n2)
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best:: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c

30

