CSCI 136 Data Structures & Advanced Programming

Faster Sorting Methods

Introduce Divide & Conquer algorithm design Explore two efficient D&C sorting methods

- MergeSort
- QuickSort

Divide & Conquer

Binary search is efficient because

- Divides the data in half (in constant time)
- Eliminates¹ one of the halves (in constant time)
- So, the number of value comparisons T_n needed to search an array of size n satisfies

$$T_n = T_{\frac{n}{2}} + 1 \text{ and } T_1 = 1$$

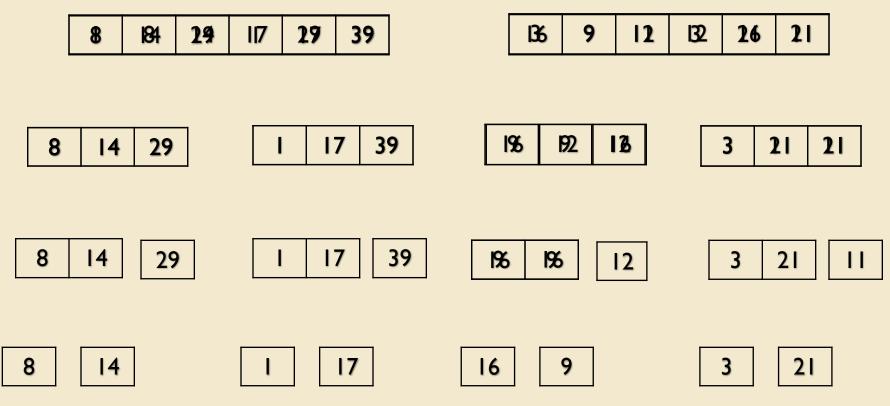
By induction, we can show that T_n is $O(\log_2 n)$

- Try this at home! [Hint: Prove it's $O(1 + \log_2 n)$]
 - You'll need to use strong induction

Faster Sorting: Merge Sort

- A divide and conquer algorithm
- Typically used on arrays
- Merge sort works as follows:
 - If the array is of length 0 or 1, then it is already sorted.
 - Divide the unsorted array into two arrays of about half the size of original.
 - Sort smaller arrays recursively by re-applying merge sort.
 - Merge the two smaller arrays back into one sorted array.
- Time Complexity?
 - Spoiler Alert! We'll see that it's O(n log n)
- Space Complexity?
 - O(n)

8	B4	289	9	17	32	14	1%	12	231	29	39
-			-								



Merge Sort : Pseudo-code

- How would we design it?
- First pass...

// recursively mergesorts A[from .. To] "in place" void recMergeSortHelper(A[], int from, int to) if (from \leq to) mid = (from + to)/2recMergeSortHelper(A, from, mid) recMergeSortHelper(A, mid+1, to) merge(A, from, to) But merge hides a number of important details....

Merge Sort : An Optimization

A naive merge method creates a secondary array

- The two merged halves of the original array are merged into the secondary array
- The secondary array is copied back into the original array
- This involves lot of array creation and moving

Instead, merge

- Uses a single secondary array
- Merges left half of original array to secondary

Merge Sort : Temporary Array

data:	8	14	29	I	17	39	16	9	12	3	21	П
temp:	8	14	29	Ι	17	39						
mergeSort left half												
data:	8	14	29	Ι	17	39	16	9	12	3	21	П
temp:	I	8	14	17	29	39						
mergeSort right half												
data:	8	14	29	Ι	17	39	3	9	П	12	16	21
temp:	I	8	14	17	29	39						
merge												
data:	Ι	3	8	9		12	14	16	17	21	29	39

Merge Sort Implementation

```
private static <T extends Comparable<T>> void
    mergeSortRecursive(T[] data, T[] temp, int low, int high) {
```

```
int n = high-low+1;
int middle = low + n/2;
if (n < 2) return;
int i;
// move lower half of data into temporary storage
for (i = low; i < middle; i++) {
   temp[i] = data[i];
```

}

}

```
mergeSortRecursive(temp,data,low,middle-1);
mergeSortRecursive(data,temp,middle,high);
merge(data,temp,low,middle,high);
```

Merge Method

```
private static <T extends Comparable<T>> void
       merge(T[] dest, T[] using, int low, int middle, int high) {
   int ri = low; // result index
   int ui = low; // using index
   int di = middle; // dest index
   // while two lists are not empty merge smaller value
  while (ui < middle && di <= high) {</pre>
        if (dest[di].compareTo(using[ui]) < 0)</pre>
                dest[ri++] = dest[di++]; // smaller is in high dest
        else
                dest[ri++] = using[ui++]; // smaller is in using
   }
   // possibly some values left in using array
  while (ui < middle) {</pre>
        dest[ri++] = using[ui++];
   }
                                                                     Ш
```

Aside: n++ vs ++n

The *postfix* increment (++) operator adds I to the value of the variable to which it is applied

int n = 1;											
n++;	//	n	now	has	value	2					
int $k = n++;$	//	k	now	has	value	2	and	n	has	value	3

Note that, in addition to incrementing n, it also returns the preincrement value of n

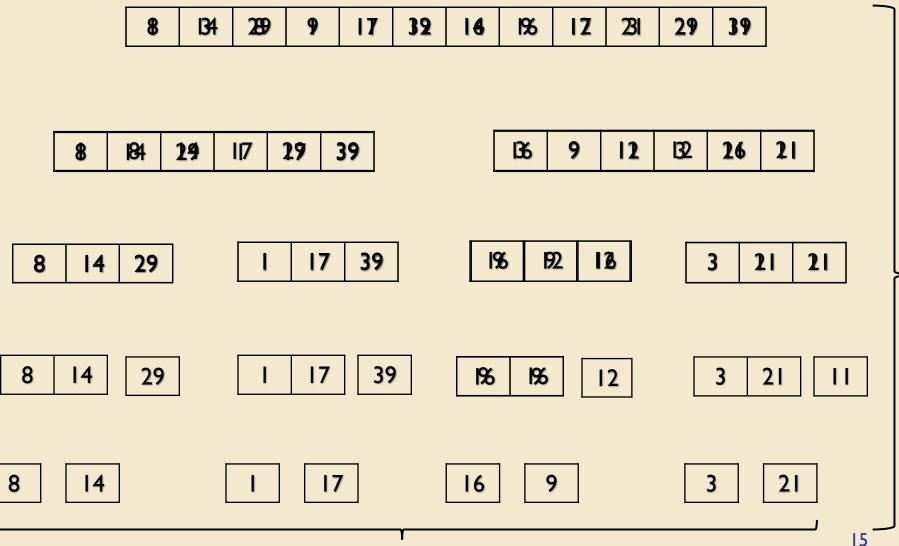
- That is: ++ is an operator that
 - returns the value of the variable to which it is applied
 - after which it increments the value of that variable
- There is also a prefix version: ++n
 - It first increments the value of the variable
 - after which it returns the (incremented) value

12

k = ++n; // k now has value 4 and so does n

Merge Sort : Java Implementation

- Implementation Notes
 - Note use of generics
 - Note carefully how temp array is used to reduce copying
 - Make sure the data is in the correct array!
- Time Complexity?
 - Takes at most 2k comparisons to merge two lists of size k
 - Number of splits/merges for list of size n is log n
 - Claim: At most time O(n log n)...We'll see soon...
- Space Complexity?
 - O(n)?
 - Need an extra array, so really O(2n)! But O(2n) = O(n)



merge takes at most n comparisons per line

Time Complexity Proof

- Prove for n = 2^k (true for other n but harder)
- That is, MergeSort for performs at most
 - n * log (n) = 2^k * k comparisions of elements
- Base cases $k \le 1$: 0 comparisons: $0 < 1 * 2^1 \checkmark$
- Induction Step: Suppose true for all integers smaller than k. Let T(k) be # of comparisons for 2^k elements. Then
- $\underline{T(k)} \le 2^{k}+2*T(k-1) \le 2^{k}+2(k-1)2^{k-1} \le \underline{k*2^{k}}\checkmark$

Merge Sort

- Unlike Bubble, Insertion, and Selection sort, Merge sort is a divide and conquer algorithm
 - Bubble, Insertion, Selection sort complexity: O(n²)
 - Merge sort complexity: O(n log n)
- Are there any limitations with Merge sort?
 - What if we're dealing with singly-linked lists?
- Why would we ever use any other algorithm for sorting?

Merge Sort for SLL

- Finding the middle element of the list takes a linear number of steps, so does merging two sorted lists of total length n
- So, if T(n) is the number of steps necessary to mergeSort an n-element list then $T(n) \le 2T\left(\frac{n}{2}\right) + cn$
- where *cn* represents the combined number of steps for splitting the list and merging the two halves

Time Complexity Proof Revisited

- Claim: For $n \ge 1$, $T(n) \le 2cn \log_2 n + c$
 - Base case n ≤ 1: Let c be the number of statements in mergeSort. Then at most c statements are executed. And c ≤ 2c log₂ 1 + c ✓
- Induction Step: Suppose true for all integers smaller than n, for some n > 1. That is,
 - For all $k < n, T(k) \le 2ck \log_2 k + c$
 - Now must show: $T(n) \leq 2cn \log_2 n + c$
- Recall: $T(n) \le 2T\left(\frac{n}{2}\right) + cn$
 - Two recursive calls to mergeSort plus a merge

Time Complexity Proof Revisited

$$T(n) \leq 2T\left(\frac{n}{2}\right) + cn$$

$$\leq 2\left(2c\frac{n}{2}\log_2\frac{n}{2} + c\right) + cn \qquad (by induction)$$

$$\leq 2cn\log_2\frac{n}{2} + 2c + cn$$

$$\leq 2cn\log_2n - 2cn + 2c + cn$$

$$= 2cn\log_2n - cn + 2c$$

$$\leq 2cn\log_2n + c + c(1 - n)$$

$$\leq 2cn\log_2n + c \text{ for } n \geq 1$$

Drawbacks to Merge Sort

- Need extra temporary array
 - If data set is large, this could be a problem
- Waste time copying values back and forth between original array and temporary array
- Can we avoid this?

 Quick sort is designed to behave much like Merge sort, without requiring extra storage space

Merge Sort	Quick Sort
Divide list in half	Partition* list into 2 parts
Sort halves	Sort parts
Merge halves	Join* sorted parts

Quick Sort

```
public void quickSortRecursive(Comparable data[],
                     int low, int high) {
    // pre: low <= high</pre>
    // post: data[low..high] in ascending order
        int pivot;
        if (low >= high) return;
       /* 1 - place pivot */
        pivot = partition(data, low, high);
       /* 2 - sort small */
       quickSortRecursive(data, low, pivot-1);
       /* 3 - sort large */
       quickSortRecursive(data, pivot+1, high);
```

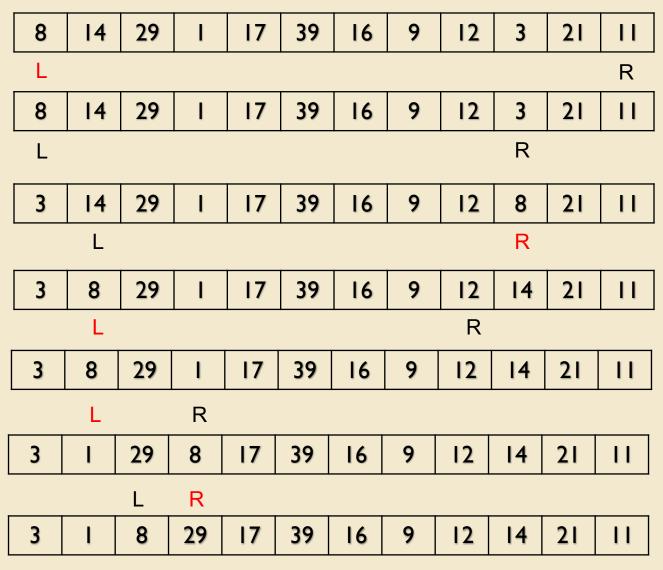
}

Partition

Idea : Rearrange array so that

- First element (pivot) into its final (sorted) position
- All values smaller than pivot are to the left of pivot
- All values larger than pivot are to the right of pivot
- Return index of "pivot"

Partition : Pivot is 8



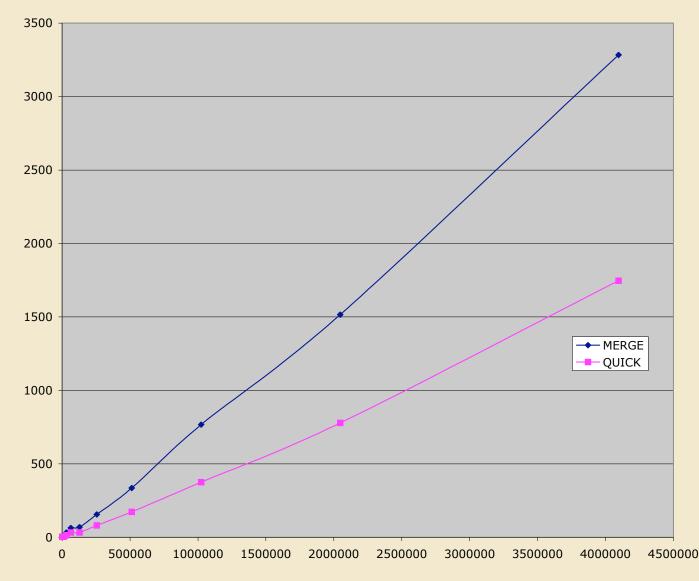
Partition

```
int partition(int data[], int left, int right) {
  while (true) {
       // pivot is data[left]: Compare to values on its right
       while (left < right && data[left] < data[right]) right--;
       if (left < right) swap(data,left++,right);</pre>
       else return left;
       // switch sides!
       // pivot is data[right]: Compare it to values on its left
       while (left < right && data[left] < data[right]) left++;</pre>
       if (left < right) swap(data,left,right--);</pre>
       else return right;
  }
}
```

Complexity

- Time:
 - Partition is O(n)
 - If partition breaks list exactly in half, same as merge sort, so O(n log n)
 - If data is already sorted, partition splits list into groups of I and n-I, so O(n²)
- Space:
 - O(n) (so is MergSort)
 - In fact, it's n + c compared to 2n + c for MergeSort

Merge vs. Quick (Average Time)



28

Food for Thought...

- How to avoid picking a bad pivot value?
 - Pick median of 3 elements for pivot (heuristic!)
- Combine selection sort with quick sort
 - For small n, selection sort is faster
 - Switch to selection sort when elements is <= 7
 - Switch to selection/insertion sort when the list is almost sorted (partitions are very unbalanced)
 - Heuristic!

Sorting Wrapup

	Time	Space				
Bubble	Worst: O(n ²)	O(n) : n + c				
	Best: O(n) - if "optimized"					
Insertion	Worst: O(n ²)	O(n) : n + c				
	Best: O(n)					
Selection	Worst = Best: O(n ²)	O(n) : n + c				
Merge	Worst = Best:: O(n log n)	O(n) : 2n + c				
Quick	Average = Best: O(n log n)	O(n) : n + c				
	Worst: O(n ²)	30				