CSCI 136
Data Structures &
Advanced Programming

Faster Sorting Methods

Goals

Introduce Divide & Conquer algorithm design

Explore two efficient D&C sorting methods
* MergeSort
e QuickSort

Divide & Conquer

Binary search is efficient because
* Divides the data in half (in constant time)
* Eliminates' one of the halves (in constant time)

So, the number of value comparisons T, needed
to search an array of size n satisfies

T,b,=Tn+1and T; =1
2

By induction, we can show that T}, is O(log, n)
e Try this at home! [Hint: Prove it's O(1 + log, n)]

* You'll need to use strong induction

| :The "conquer" step

Faster Sorting: Merge Sort

A divide and conquer algorithm
Typically used on arrays

Merge sort works as follows:
 If the array is of length O or |, then it is already sorted.

e Divide the unsorted array into two arrays of about half the
size of original.

e Sort smaller arrays recursively by re-applying merge sort.

* Merge the two smaller arrays back into one sorted array.
Time Complexity?

e Spoiler Alert! Weé'll see that it’s O(n log n)
Space Complexity?

* O(n) ’

Merge Sort

8 B | ® | 9 [IT|32(|16| 1| I1Z |3 |29 | 39
8 | Bt |29 | I7 |29 | 39 B | 9 [12| R |26 2I
14 | 29 | | 17| 39 1% 13 21 | 21
|4 29 | | 17 || 39 1% | % 12 3 | 2l |
14 I |7 16 21

Merge Sort : Pseudo-code

* How would we design it?
* First pass...

// recurstvely mergesorts Affrom .. 1o/ “in place”
void recMergeSorttelper(A[/, intfrom, int to)

if (from=to)
mid = (from +t0)/2
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, o)
merge(A, from, (o)

But merge hides a number of important details....

Merge Sort : An Optimization

A naive merge method creates a secondary array

* The two merged halves of the original array are
merged into the secondary array

* The secondary array is copied back into the original
array

This involves lot of array creation and moving
Instead, merge

* Uses a single secondary array

* Merges left half of original array to secondary

Merge Sort : Temporary Array

data: 8 | 14|29 | | 17|39 (16| 9 | 12| 3 |21 | II

temp: | 8 [14|29| 1 |17] 39

mergeSort left half

data: 8 (14|29 | | 17 (39|16 9 (12| 3 |21 | II
temp: | | 8 | 14|17 |29 | 39
mergeSort right half
data: 8 (14|29 | | 17 | 39| 3 9 (11|12] 16 | 2l
temp: | | 8 | 14| 17 |29 | 39
merge

data: | 3|8 |9 || 12)14 |16 17|21 |29 | 39

Merge Sort Implementation

private static <T extends Comparable<T>> void

mergeSortRecursive (T[] data, T[] temp, int low,

int n = high-low+1;
int middle = low + n/2;
if (n < 2) return;

int i;
// move lower half of data into temporary storage
for (i = low; i < middle; i++) {
temp[i] = data[i];
}
mergeSortRecursive(temp,data,low,middle-1);
mergeSortRecursive(data,temp,middle,high);
merge (data,temp,low,middle,high);

int high) {

Merge Method

private static <T extends Comparable<T>> void
merge (T[] dest, T[] using, int low, int middle, int high) {

int ri = low; // result index
int ui = low; // using index
int di = middle; // dest index
// while two lists are not empty merge smaller value
while (ui < middle && di <= high) {
if (dest[di].compareTo(using[ui]) < 0)
dest[ri++] = dest[di++]; // smaller is in high dest
else
dest[ri++] = using[ui++]; // smaller is in using
}
// possibly some values left in using array
while (ui < middle) {

dest[ri++] = using[ui++t];

Aside: n++ vs ++n

The postfix increment (++) operator adds | to the value of the
variable to which it is applied

int n = 1;
n++; // n now has value 2
int k = n++; // k now has value 2 and n has value 3

Note that, in addition to incrementing n, it also returns the pre-
increment value of n

e Thatis: ++ is an operator that
e returns the value of the variable to which it is applied
e after which it increments the value of that variable

There is also a prefix version: ++n
* |t first increments the value of the variable
e after which it returns the (incremented) value 2

k = ++n; // k now has value 4 and so does n

Merge Sort : Java Implementation

* Implementation Notes
* Note use of generics
* Note carefully how temp array is used to reduce copying
e Make sure the data is in the correct array!
e Time Complexity?
e Takes at most 2k comparisons to merge two lists of size k
* Number of splits/merges for list of size n is log n
e Claim: At most time O(n log n)...We'll see soon...
e Space Complexity?
e O(n)?
* Need an extra array, so really O(2n)! But O(2n) = O(n)

log(n)
depth

Merge Sort
8 B | ® |9 [IT|32|16| 1| I1Z |3 |29 39
8 | Bt |29 | 17|29 39 B | 9 [12| R |26 2I
14 | 29 I | 17 | 39 1% 13 21 | 21
|4 29 I |7 39 1% | 1% 12 3 | 2l |
14 I |7 |6 21

1

merge takes at most n comparisons per line

Time Complexity Proof

Prove for n = 2k (true for other n but harder)

That is, MergeSort for performs at most
e n* log (n) = 2k * k comparisions of elements

Base cases k £ 1: 0 comparisons: 0 < 1 * 21 /

Induction Step: Suppose true for all integers
smaller than k. Let T(k) be # of comparisons
for 2 elements. Then

T(k) £ 25+2%T(k—1) £ 2K+ 2(k—1)2x 1 < kx2k ¢/

16

Merge Sort

e Unlike Bubble, Insertion, and Selection sort,
Merge sort is a divide and conquer algorithm

 Bubble, Insertion, Selection sort complexity: O(n?)
* Merge sort complexity: O(n log n)

* Are there any limitations with Merge sort!
* What if we're dealing with singly-linked lists?

* Why would we ever use any other algorithm
for sorting?

Merge Sort for SLL

* Finding the middle element of the list takes a
linear number of steps, so does merging two
sorted lists of total length n

* So, if T(n) is the number of steps necessary to
mergeSort an n-element list then
T(n) < 2T (g) + cn

* where cn represents the combined number of

steps for splitting the list and merging the two

halves 8

Time Complexity Proof Revisited

e Claim: Forn >1,T(n) < 2cnlog,n +c

e Base case n<1: Let cbe the number of
statements in mergeSort. Then at most ¢
statements are executed. And ¢ < 2clog, 1+ ¢ v

* Induction Step: Suppose true for all integers
smaller than n, for some n > 1. That is,

e Forallk <n,T(k) < 2cklog, k + c

* Now must show: T(n) < 2cnlog,n + ¢
e Recall: T(n) < 2T (g) + cn

e Two recursive calls to mergeSort plus a merge

19

Time Complexity Proof Revisited
n
2
<2 (ZCglogz % + c) +cn (by induction)

T(n)SZT()+cn

< 2cnlog, % + 2¢c +cn

< 2cnlog,n —2cn+ 2¢c + cn
= 2cnlog,n —cn + 2¢

< 2cnlog,n+c+c(1—n)
< 2cnlog, n + ¢ for n21

Drawbacks to Merge Sort

* Need extra temporary array

* |f data set is large, this could be a problem

* Waste time copying values back and forth
between original array and temporary array

e Can we avoid this?

21

Quick Sort

* Quick sort is designed to behave much like
Merge sort, without requiring extra storage

space

Merge Sort

Quick Sort

Divide list in half

Partition™ list into 2 parts

Sort halves

Sort parts

Merge halves

Join* sorted parts

22

Quick Sort

public void quickSortRecursive(Comparable datal],
int low, int high) {
// pre: low <= high
// post: data[low..high] in ascending order
int pivot;
if (low >= high) return;

/* 1 - place pivot */

pivot = partition(data, low, high);

/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+l, high);

23

Partition

|ldea : Rearrange array so that

First element (pivot) into its final (sorted) position
All values smaller than pivot are to the left of pivot
All values larger than pivot are to the right of pivot

Return index of “pivot”

24

Partition : Pivot is 8

8 | 1429 1 | 173916 12| 3 |21 |11

L R

8 | 1429 1 | 173916 12| 3 |21 |11

L R

3 (14|29 1 [17]39] 16 12| 8 |21 | Il

308 [29| 1 [17]39] 16 12| 14| 21 | 11
L R

308|291 [17]39]16 12| 14| 21 | 11
L R

3|1 [29] 8 |17]39]16 12| 14 | 21 | I

L R
3| 1| 81[2917]39]16 12| 14| 21 | I

25

Partition

int partition(int data[], int left, int right) {
while (true) {
// pivot is data[left]: Compare to values on its
while (left < right && data[left] < data[right])

if (left < right) swap(data,left++,right);
else return left;

// switch sides!

// pivot is data[right]: Compare it to values on
while (left < right && data[left] < data[right])

if (left < right) swap(data,left,right--);
else return right;

right
right--;

its left
left++;

26

Complexity

e Time:
 Partition is O(n)

* |If partition breaks list exactly in half, same as
merge sort, so O(n log n)

* |f data is already sorted, partition splits list into
groups of | and n-1, so O(n?)

* Space:
* O(n) (so is MergSort)

* In fact, it’s n + c compared to 2n + c for MergeSort

27

Merge vs. Quick (Average Time)

3500 -

3000 /

2500

2000

1500

—e— MERGE
QUICK

1000

500

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

Food for Thought...

* How to avoid picking a bad pivot value?

e Pick median of 3 elements for pivot (heuristic!)

* Combine selection sort with quick sort
* For small n, selection sort is faster
e Switch to selection sort when elements is <=7

e Switch to selection/insertion sort when the list is
almost sorted (partitions are very unbalanced)

e Heuristic!

29

Sorting VWrapup

Time Space
Bubble Worst: O(n?) O(n):n+c
Best: O(n) - if “optimized”
Insertion Worst: O(n?) O(n):n+c
Best: O(n)
Selection Worst = Best: O(n?) O(n) :n+c
Merge Worst = Best:: O(n log n) O(n) :2n + ¢
Quick Average = Best: O(n log n) O(n) :n+c

Worst: O(n?)

30

