
CSCI 136
Data Structures &

Advanced Programming

Simple Sorting Algorithms

Introduction to Sorting

• Along with search, sorting is among the most
ubiquitous computations

• Simple Examples
• Reordering a list of integers so that they are in

increasing order
• Reordering a list of strings so that they are in

alphabetical (lexicographic) order
• Ordering the results of a Google search by

decreasing relevance

2

Introduction to Sorting

• More Examples
• Reordering a list of strings so that they are in

lexicographical order by length
• Shorter strings come before longer strings and

• Equal-length strings are in lexicographic order

• Ordering tracks in a music collection by artist
• Breaking ties by title

– Breaking remaining ties by release date

• If you can order it, you can sort it!

• So, let's look at some simple sorting methods
3

Introduction to Sorting

In this video we will
• Introduce three simple sorting algorithms
• Bubble Sort, Insertion Sort, and Selection Sort

• Discuss their implementation
• Discuss their time and space complexity
• Identify some sorting-specific measures of

complexity

• Introduce some notation for describing lower
bounds

4

Bubble Sort

• First Pass:
• (5 1 3 2 9) ® (1 5 3 2 9)

• (1 5 3 2 9) ® (1 3 5 2 9)
• (1 3 5 2 9) ® (1 3 2 5 9)

• (1 3 2 5 9) ® (1 3 2 5 9)

• Second Pass:
• (1 3 2 5 9) ® (1 3 2 5 9)
• (1 3 2 5 9) ® (1 2 3 5 9)

• (1 2 3 5 9) ® (1 2 3 5 9)

• Third Pass:
• (1 2 3 5 9) -> (1 2 3 5 9)

• (1 2 3 5 9) -> (1 2 3 5 9)

• Fourth Pass:
• (1 2 3 5 9) -> (1 2 3 5 9)

• Finished!

http://www.visualgo.net/sorting
http://www.youtube.com/watch?v=lyZQPjUT5B4

http://www.visualgo.net/sorting
http://www.youtube.com/watch?v=lyZQPjUT5B4

Bubble Sort

6

Bubble sort uses a utility method swap

private static void swap(int[]A, int i, int j) {
int temp = a[i];
A[i] = A[j];
A[j] = temp;

}
public static void bubbleSort(int[] A) {

for(int i = 1; i < A.length; i++)
// Process all but last i-1 elements
for(int j = 0; j < A.length -i; j++)

if(A[j] > A[j+1]) swap(A,j,j+1);
}

The only subtlety: Do loops start and end at reasonable points!

Bubble Sort
• Repeatedly scans through the list to be sorted,

comparing two items at a time and swapping them if
they are in the wrong order
• Works on smaller initial slice each time
• Can be improved to stop after a "swap-free" scan

• Gets its name from the way larger elements "bubble"
to the end of the list

• Time complexity?
• O(n2) : Might perform O(n2) compares and O(n2) swaps

• Space complexity?
• O(n) total (very little additional space is required)

• It's a Stable sorting method
• Equal elements remain in same relative positions

Bubble Sort

8

public static void bubbleSort(int[] A) {
for(int i = 1; i < A.length; i++)

// Process all but last i-1 elements
for(int j = 0; j < A.length -i; j++)

if(A[j] < A[j+1]) swap(A,j,j+1);
}

Counting Operations (where n = A.length)

• Outer loop executes n-1 times
• for ith iteration: inner loop executes n-i times

• Performing, say at most, say, 5 operations each time

!
!"#

$%#

5 𝑛 − 𝑖 = !
!"#

$%#

5𝑛 −!
!"#

$%#

5𝑖 = 5𝑛 𝑛 − 1 − 5!
!"#

$%#

𝑖 = 5𝑛 𝑛 − 1 − 5𝑛(𝑛 − 1)/2

• This equals
,-(-./)

0 which is 𝑂(𝑛0)

Aside: Lower Bound Notation
There are situations in which bubble sort must
necessarily perform a quadratic number of operations.

• Any "almost reverse-sorted" list will cause this
This observation describes a lower bound on the
(worst-case) running time of the algorithm
• It's useful to have notation for lower-bound claims,

similar to the Big-O notation for upper bound
• It exists: It's called "Big-𝞨" (Big Omega) notation

9

Aside: Lower Bound Notation
Definition: A function f(n) is 𝛺(g(n)) if for some
constant c > 0 and all n ≥ n0

𝑓 𝑛 ≥ 𝑐 𝑔(𝑛)
So, f(n) is 𝛺(g(n)) exactly when g(n) is O(f(n))

All three sorting algorithms have time complexity
• O(n2) : Never use more than cn2 operations
• 𝛀(n2) : Sometimes use at least cn2 operations

When f(n) is O(g(n)) and f(n) is 𝛀(g(n)) we write:
f(n) is 𝚹(g(n))

(pronounced "Big-Theta")
10

Bubble Sort Complexity
Time complexity?
• 𝚹(n2) : That is, both O(n2) and 𝛀(n2)

• O(n2) : Never performs more than c n2 operations
• 𝛀(n2) : Sometimes uses at least cn2 operations

• Might perform O(n2) compares and O(n2) swaps

Space complexity?
• 𝚹(n) : That is, both O(n) and 𝛀(n)

• 𝛀(n) : Needs to store an n-element array of constant-sized
values

• O(n) : Only stores the array plus a few other constant-sized
variables

Insertion Sort

• 5 7 0 3 4 2 6 1
• 5 7 0 3 4 2 6 1
• 0 5 7 3 4 2 6 1
• 0 3 5 7 4 2 6 1
• 0 3 4 5 7 2 6 1
• 0 2 3 4 5 7 6 1
• 0 2 3 4 5 6 7 1
• 0 1 2 3 4 5 6 7

http://www.visualgo.net/sorting

http://www.visualgo.net/sorting

Insertion Sort
• Simple sorting algorithm that works by building a

sorted list one entry at a time
• Less efficient on large lists than more advanced

algorithms
• Advantages:

• Simple to implement and efficient on small lists
• Efficient on data sets which are already mostly sorted

• Time complexity (Worst Case): 𝚹(n2)
• O(n2) : Only perform O(n2) compares and O(n2) moves
• 𝛀(n2) : Could perform 𝛀(n2) compares and 𝛀(n2) moves

• Space complexity : 𝚹(n)

• Stable: Yes

Selection Sort

• 11 3 27 5 16
• 11 3 16 5 27
• 11 3 5 16 27
• 5 3 11 16 27
• 3 5 11 16 27

Swap 27 with 16
Swap 16 with 5
Swap 11 with 5
Swap 5 with 3
Done!

• The algorithm works as follows:
• Find the maximum value in the list

• Swap it with the value in the last position

• Repeat the steps above for remainder of the list (ending at
the second to last position)

• Continue on progressively smaller portions of array

Selection Sort

• Similar to insertion sort
• Noted for its simplicity and performance advantages

when compared to complicated algorithms
• Time complexity (Worst Case): 𝚹(n2)
• O(n2) : Only perform O(n2) compares and O(n)

moves
• 𝛀(n2) : Could perform 𝛀(n2) compares and 𝛀(n)

moves

• Space Complexity : 𝚹(n)
• Stable : Yes

Implementation Details

16

Selection sort uses two utility methods

Uses a swap method
private static void swap(int[]A, int i, int j) {

int temp = a[i];
A[i] = A[j];
A[j] = temp;

}

And a max-finding method
// Find position of largest value in A[0 .. last]
public static int findPosOfMax(int[] A, int last) {

int maxPos = 0; // A wild guess
for(int i = 1; i <= last; i++)

if (A[maxPos] < A[i]) maxPos= i;
return maxPos;

}

Iterative & Recursive Selection Sort

17

An Iterative Selection Sort
public static void selectionSort(int[] A) {

for(int i = A.length - 1; i>0; i--)
int big= findPosOfMax(A,i);
swap(A, i, big);

}
}

A Recursive Selection Sort (just the helper method)
public static void recSSHelper(int[] A, int last) {

if(last == 0) return; // base case

int big= findPosOfMax(A, last);
swap(A,big,last);
recSSHelper(A, last-1);

}

Notes

18

Three simple algorithms: Bubble, Insertion, Selection

• All perform two basic operations: comparisons and swaps/moves
Comparisons vs Swaps/Moves (worst case)

• Bubble Sort performs (naïve version)
• quadratic number of comparisons in all cases

• quadratic number of swaps for almost reverse-sorted data

• Insertion Sort performs
• linear number of comparisons on almost-sorted data and quadratic number

on almost reverse-sorted data
• quadratic number of moves on almost reverse-sorted data

• Selection Sort
• quadratic number of comparisons in all cases

• at most (and sometimes) a linear number of swaps

Coming Up Next

How can we adapt our sorting algorithms to
work on non-primitive data types?
Can we break the 𝛀(n2) performance
bottleneck of our sorting algorithms?

Spoiler: Yes!

Stay tuned….

19

