
1

CSCI 136
Data Structures &

Advanced Programming

Balanced Binary Search Trees



2

Balanced Binary Search Trees



3

Outline

• Tree balancing to maintain small height
• AVL Trees
• Red-Black Trees

• Splay Trees



4

Binary Search Tree Summary

Binary search trees store comparable values and 
support
• add(E value)

• contains(E value)
• get(E value)
• remove(E value)

All of which run in O(h) time (h = tree height)
Can also support
• predecessor/successor methods
• Range query: Find all value V : A ≤ V ≤ B



5

Controlling Tree Height

• Can we design a binary search tree that is 
always “shallow”?

• Yes! In many ways. We'll Explore a few
• First Up : AVL trees
• Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper 
about AVL trees in 1962 called "An algorithm for 
the organization of information"



6

One of the first balanced binary search tree structures

Definition:  A binary search tree T is an AVL tree if

1. T is the empty tree, or

2. T has left and right sub-trees TL and TR such that

a) The heights of TL and TR differ by at most 1, and

b) TL and TR are AVL trees

Note

Recursive definition implies that height difference of at most 
1 must hold at every node!

AVL Trees



7

AVL Trees

Balance factor: Height of right subtree minus height of left subtree



8

Balance Factor of a binary tree node:

• height of right subtree minus height of left subtree. 

• A node with balance factor 1, 0, or -1 is considered 
balanced. 

• A node with any other balance factor is considered 
unbalanced and requires rebalancing the tree. 

Alternate Definition: An AVL Tree is a binary tree in 
which every node is balanced.

• Tree stores balance factor at each node

• Updates balance factors during add/remove

AVL Trees



9

AVL Trees have O(log n) Height

Theorem: An AVL tree on n nodes has height O(log n)
Proof idea
• Show that an AVL tree of height h has at least fib(h) 

nodes (easy induction proof---try it!)

• Recall: 𝑓𝑖𝑏 ℎ ≥ ( ⁄! ")# if h ≥ 10
• Also provable by induction!

• So 𝑛 ≥ ( ⁄! ")# and thus log ⁄! " 𝑛 ≥ ℎ (for ℎ ≥ 10)
• log ⁄! "

𝑛 ≥ ℎ --- what's log ⁄! "
𝑛 ???



10

AVL Trees have O(log n) Height
Recall the change of base rule for logs

For any 𝑎, 𝑏 > 0, log% 𝑛 =
&'(# )
&'(# %

Therefore

log ⁄! " 𝑛 =
&'(" )

&'("( ⁄! ")
= ,

&'("( ⁄! ")
3 log" 𝑛 = 𝑐 3 log" 𝑛

And so
h ≤ log -! "

𝑛 = 𝑐 3 log" 𝑛

So h is O(log n) as desired
We used Fibonacci numbers in a data structures proof

How Cool Is That?!



11

If adding to an AVL tree creates an unbalanced node A, 
we rebalance the subtree with root A

This involves a constant-time restructuring of part of 
the tree (this is a claim!)

The rebalancing steps are called tree rotations

Tree rotations preserve binary search tree structure

AVL Trees



12

Suppose adding to an AVL tree creates some 
unbalanced nodes

• The only nodes that can become unbalanced are the 
ancestors of the newly added node

• So they are all on the path from the new node back to the root

• Their balance factors can change by at most 1

• So there may be some nodes that now have balance 
factors ±2

• Let's consider the deepest such node, call it A

• All subtrees of A are AVL trees—balance factors 0 or ±1

AVL Trees



13

There are four cases for the location of the new node 
with respect to A

• It's in the left subtree of the left child of A

• It's in the right subtree of the left child of A

• It's in the left subtree of the right child of A

• It's in the right subtree of the right child of A

Let's consider the first two cases

• The other two are handled similarly

AVL Trees



16

Single Right Rotation

Assume A is unbalanced but its subtrees are AVL…

And that the new node is in the left subtree of B

Note: Heights must be as labeled in figure!



18

Double Rotation I
Now assume the new node is in the right subtree of B

Note: T2 and T3 might be switched!



19

Double Rotation II



20

AVL Tree Facts
• A tree that is AVL except at root, where root 

balance factor equals ±2 can be rebalanced 
with at most 2 rotations

• add(v) requires at most O(log n) balance 
factor changes and one (single or double) 
rotation to restore AVL structure

• remove(v) requires at most O(log n) balance 
factor changes and (single or double) rotations 
to restore AVL structure

• An AVL tree on n nodes has height O(log n)



21

AVL Trees: One of Many

There are many strategies for tree balancing to 
preserve O(log n) height, including
• AVL Trees: guaranteed O(log n) height
• Red-black trees: guaranteed O(log n) height
• B-trees (not binary): guaranteed O(log n) height
• 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

• Splay trees: Amortized O(log n) time operations
• Randomized trees: O(log n) expected height



22

A Red-Black Tree
(from Wikipedia.org)



23

Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness
• Each node is colored red or black
• Coloring satisfies these rules
• All empty trees are black

• We consider empty nodes to be the leaves of the tree

• Children of red nodes are black
• All paths from a given node to its descendent leaves 

have the same number of black nodes
• This is called the black height of the node



24

A Red-Black Tree
(from Wikipedia.org)



25

Red-Black Trees

The coloring rules lead to the following result
Proposition: No leaf has depth more than twice 
that of any other leaf.
This in turn can be used to show
Theorem: A Red-Black tree with n internal nodes 
has height satisfying ℎ ≤ 2 log(𝑛 + 1)

• Note: The tree will have exactly n+1 (empty) leaves
• since each internal node has two children



26

Red-Black Trees
Theorem: A Red-Black tree with n internal nodes has 
height satisfying ℎ ≤ 2 log(𝑛 + 1)
Proof sketch: Note: we count empty tree nodes!
• If root is red, recolor it black.
• Now merge red children into (black) parents

• Now n’ ≤ n nodes and height h’ ≥ h/2

• New tree: Each internal node has degree 2, 3, or 4
• All leaves have depth exactly h’ and there are n+1 leaves

• So 𝑛 + 1 ≥ 2"# , so log# 𝑛 + 1 ≥ ℎ$ ≥ "
#

• Thus 2 log" 𝑛 + 1 ≥ ℎ
Corollary: R-B trees with n nodes have height O(log n)



27

Red-Black Tree Insertion



28

Red-Black Tree Insertion



29

Red-Black Tree Insertion



30

Red-Black Tree Insertion



31

Red-Black Tree Insertion



32

Splay Trees

Splay trees are self-adjusting binary trees
• Each time a node is accessed, it is moved to 

root position via rotations
• No guarantee of balance (or shallow height)
• But good amortized performance
Theorem: Any set of m operations (add, remove, 
contains, get) on an n-node splay tree take at 
most O(m log n) time.



33

Splay Tree Rotations
Right Zig Rotation (left version too)

Right Zig-Zig Rotation (left version too)

Right Zig-Zag Rotation (left version too)



34

Splay Tree Iterator
(aka Unintended Consequence)

• Recall: The iterator for an in-order traversal of a 
Binary(Search)Tree employed a stack that contained 
the path from the root of the tree to the next node to 
be served by the iterator

• For each of our balanced binary tree implementations
• Add and remove methods change the shape of the tree
• This means they break any iterators that are currently 

traversing the tree.

• This reinforces our dictum
Don't change a structure while iterating over it

• However, splay trees introduce a new wrinkle….



35

Splay Tree Iterator
• Even contains method changes splay tree shape!
• Solution: Remove the stack from the iterator
• Observation: Given location of current node (node 

whose value is next to be returned), we can compute 
it’s (in-order)successor in next(): It is either
• The left-most leaf of the right child of current, or

• The closest ”left-ancestor” of current
• Ancestor whose left child is also an ancestor of current



36

Finding the Next Node

If current = N, next = O : left-most leaf of right child of N
If current = L, next = N : closest left-ancestor of L



37

Splay Tree Iterator
But, for reset to work, we also need be able to 
find the root of the tree!
• Idea: Hold a single “reference” node
• Any node of the tree will do

• To reset the iterator
• Walk up the tree from the reference node to the root

• Use the root to reset the iterator

• The splay tree iterator can now survive tree 
reshaping!
• Although behavior after add/remove is still 

unpredictable



38

Summary & Observations
Many variants of the binary search tree structure 
exist
• They take different approaches to improving the 

effectiveness of the structure
• AVL, RedBlack, and other variants ensure that the 

tree height is O(log n)

• Splay Trees provide O(log n) amortized performance 
per operation

• Randomization (not discussed here) can be used to 
guarantee O(log n) average performance

• This presentation has just scratched the surface


