CSCI 136
Data Structures &
Advanced Programming

Associations & Dictionaries

Fall 2020
Instructors: (Bill),BillL)

Qutline

A Ubiquitous Data Structure : Dictionary
A Useful Class : Association
Everything's an Object : The Object Class

A Simple Implementation : Dictionary

Dictionaries

* Look up a value based on a key
e Key — Value

e Examples

e Account number — Balance
* (int — double)

e Student name — Grades
* (String — String[])

* Google:
e URL — page.html
e page.html — {a.html, b.html, ...} (links in page)
* word — {a.html, d.html, ...} (pages with word)
 (String — String) or (String — String[])

Dictionary Goals

Look-up should be fast
* Wel'll return to this many times during course

Look-up should be unambiguous
* Each key appears only once

e But the value can be a collection of items
Operations
 contains(key) = boolean
» getValue(key) = value
* What if key isn't in dictionary?
 add(key,value) = void? boolean? previous value?
* delete(key,value) = void? boolean? previous value!?

Demo: A Philosopher's Dictionary

Association Class

(from Duane's structure package)

* We want to capture the “key — value”

relationship in a general class that we can use
everywhere

* Hold a single (key , value) pair

* What types do we use for key and value
instance variables?

e Object!

* All class types in Java implicitly extend Object class

Class Object

At the root of all class-based types is the type Object

All class types implicitly extend class object

e Student, Nim, String, ... extend Object
Object ob = new Student(); // legal!
Student s = new Object(); // NOT legal!

e Student, Nim, and String are subclasses of type Object

Class Object defines some methods that all classes

should support, including
public String toString()
public boolean equals(Object other)

But we usually override (redefine) these methods

* As we did with toString() in our (class-based) Nim example
6

Object Equality

‘'==" tests whether 2 names refer to same object
e Each time we use “new’” a new object is created

What do we really want!?

e Depends on object type!

e String : Same sequence of characters in same order

e Student : Same name

— Probably: More likely some unique ID string
— We could hope that name and age together are good enough....

Overriding the equals method achieves this
Let's see an example....

equals()

* We can define equals() for our Student class

public boolean equals(Object other) {
if (other instanceof Student) {
Student os = (Student) other;
return getName().equals(os.name()) &&
getAge() == ot.getAge() }
return false;

}
* Notes
e Must declare other to be of type Object
* Must cast other to type Student
e Use == on primitive types only
* Use instanceof to avoid typecast error

* Pro Tip: add toLower () to avoid upper/lower-case
mismatches if case-insensitivity is desired!

Association Class

(from Duane's structure package)

* We want to capture the “key — value”

relationship in a general class that we can use
everywhere

* Hold a single (key , value) pair

* What types do we use for key and value
instance variables?

e Object!

* All class types in Java implicitly extend Object class

Association Class

Association Methods

* public Association (Object key, Object value)
* public Object getKey() : return key

e public Object getValue() : return value

e public Object setValue(Object v)

e Returns previous value

* public boolean equals(Object other)

* Returns true if keys match; false otherwise

Example: A Philosopher’s Dictionary

import structure.Association;
class Dictionary {
protected Association words[] = new Association[5];

public Dictionary() {
words[0] = new Association("perception",
"Awareness of an object of thought");

words[l] = new Association("person",
"An individual capable of moral agency");

words[2] = new Association("pessimism",
"Belief that things happen for the worst");

words[3] = new Association("philosophy",
"Literally, love of wisdom.");

words[4] = new Association("premise",
"A statement used to infer truth of others");

}

// implementation continued on next slide..

Example: A Philosopher’s Dictionary

// post: returns the definition of word, or "" if not found.

public String lookup(String word) {

// Note: If words array is not "full", this method would crash
// If a word wasn't found (Why?)

for (int i1 = 0; i < words.length; i++) {

Association a = words[i];

// Note: a.getKey() is an Object but word is a String!
// Java knows to use the equals method for Strings
if (a.getKey().equals(word)) {

return (String) a.getValue();

// note the type-cast above to recover type

}

return "";

}

// implementation continued on next slides..

Example: Dictionary Implementation

// A method to print the defs of words from command line.
public static void main(String args[]) {
Dictionary dict = new Dictionary();

System.out.println();

for (int i = 0; i < args.length; it++) {
String answer = dict.lookup(args[i]);

if (!answer.equals(""))

System.out.println(args[i] + ": " + answer);
else
System.out.println("The word '" + args[i] +

was not found.");

}
System.out.println();

}

// End of class declaration

Association Class Implementation

// Association is part of the structure package
class Association {

protected Object key;

protected Object value;

//pre: key != null

public Association (Object K, Object V) {
Assert.pre (K!=null, “Null key”);
key = K;
value = V;

public Object getKey() {return key;}
public Object getValue() {return value;}
public Object setValue(Object V) {

Object old = value;

value = V;

return old;

}

// Continued on next slide...

Association Class Implementation

public boolean equals(Object other) {
if (other instanceof Association) {

Association otherAssoc = (Association)other;

return getKey().equals(otherAssoc.getKey());
}

else return false;

* Notes

e The actual structure package code does NOT do the
instanceof check (but it should).

* Instead the method has a “pre-condition” comment that says
the other must be a non-null Association!
* WEe'll return to the topic of pre- (and post-) conditions later

* Need to import structure.Association;

Summary/Take Aways

* Notes

Association implements a (key,value) pair type
* Itis part of Duane's structure package

An array of associations allows the building of a simple
dictionary

* We only implemented the contains method

e We'll revisit Dictionaries soon to remedy this

We were forced to store certain values as variables of type
Obiject then cast them back to their actual type before being
able to invoke methods of their actual type
e Given Object o = new Student("Bill J", 18, 'B');
* We can't write o.getName () ;

* We can write o.toString();

* Because Object class has a toString method
* And happily the correct version (Student) of toString will be used (if we wrote it!)

WEe'll solve this casting "problem" in the next video....

Lecture Ends Here

