
CSCI 136
Data Structures &

Advanced Programming

Associations & Dictionaries
Fall 2020

Instructors: (BillJ,BillL)

Outline
• A Ubiquitous Data Structure : Dictionary

• A Useful Class : Association

• Everything's an Object : The Object Class

• A Simple Implementation : Dictionary

2

Dictionaries
• Look up a value based on a key
• Key ® Value

• Examples
• Account number ® Balance

• (int ® double)

• Student name ® Grades
• (String ® String[])

• Google:
• URL ® page.html
• page.html ® {a.html, b.html, …} (links in page)
• word ® {a.html, d.html, …} (pages with word)
• (String ® String) or (String ® String[])

Dictionary Goals
• Look-up should be fast
• We'll return to this many times during course

• Look-up should be unambiguous
• Each key appears only once

• But the value can be a collection of items

• Operations
• contains(key) à boolean
• getValue(key) à value

• What if key isn't in dictionary?

• add(key,value) à void? boolean? previous value?
• delete(key,value) à void? boolean? previous value?

• Demo: A Philosopher's Dictionary

Association Class
(from Duane's structure package)

• We want to capture the “key ® value”
relationship in a general class that we can use
everywhere

• Hold a single (key , value) pair
• What types do we use for key and value

instance variables?
• Object!

• All class types in Java implicitly extend Object class

Class Object
• At the root of all class-based types is the type Object
• All class types implicitly extend class Object

• Student, Nim, String, … extend Object
Object ob = new Student(); // legal!
Student s = new Object(); // NOT legal!

• Student, Nim, and String are subclasses of type Object

• Class Object defines some methods that all classes
should support, including
public String toString()
public boolean equals(Object other)

• But we usually override (redefine) these methods
• As we did with toString() in our (class-based) Nim example

6

Object Equality

• ‘==‘ tests whether 2 names refer to same object
• Each time we use “new” a new object is created

• What do we really want?
• Depends on object type!

• String : Same sequence of characters in same order
• Student : Same name

– Probably: More likely some unique ID string
– We could hope that name and age together are good enough….

• Overriding the equals method achieves this
• Let's see an example…. 7

equals()
• We can define equals() for our Student class

public boolean equals(Object other) {
if (other instanceof Student) {

Student os = (Student) other;
return getName().equals(os.name()) &&

getAge() == ot.getAge() }
return false;
}

• Notes
• Must declare other to be of type Object
• Must cast other to type Student
• Use == on primitive types only
• Use instanceof to avoid typecast error

• Pro Tip: add toLower() to avoid upper/lower-case
mismatches if case-insensitivity is desired!

8

Association Class
(from Duane's structure package)

• We want to capture the “key ® value”
relationship in a general class that we can use
everywhere

• Hold a single (key , value) pair
• What types do we use for key and value

instance variables?
• Object!

• All class types in Java implicitly extend Object class

Association Class

Association Methods
• public Association (Object key, Object value)
• public Object getKey() : return key
• public Object getValue() : return value
• public Object setValue(Object v)
• Returns previous value

• public boolean equals(Object other)
• Returns true if keys match; false otherwise

Example: A Philosopher's Dictionary
import structure.Association;
class Dictionary {

protected Association words[] = new Association[5];

public Dictionary() {
words[0] = new Association("perception",

"Awareness of an object of thought");

words[1] = new Association("person",
"An individual capable of moral agency");

words[2] = new Association("pessimism",
"Belief that things happen for the worst");

words[3] = new Association("philosophy",
"Literally, love of wisdom.");

words[4] = new Association("premise",
"A statement used to infer truth of others");

}
// implementation continued on next slide…

// post: returns the definition of word, or "" if not found.

public String lookup(String word) {

// Note: If words array is not "full", this method would crash
// If a word wasn't found (Why?)

for (int i = 0; i < words.length; i++) {

Association a = words[i];

// Note: a.getKey() is an Object but word is a String!
// Java knows to use the equals method for Strings
if (a.getKey().equals(word)) {

return (String) a.getValue();
// note the type-cast above to recover type

}
}
return "";

}
// implementation continued on next slides…

Example: A Philosopher's Dictionary

Example: Dictionary Implementation
// A method to print the defs of words from command line.

public static void main(String args[]) {
Dictionary dict = new Dictionary();
System.out.println();

for (int i = 0; i < args.length; i++) {
String answer = dict.lookup(args[i]);

if (!answer.equals(""))
System.out.println(args[i] + ": " + answer);

else
System.out.println("The word '" + args[i] +
"' was not found.");

}
System.out.println();

}
}
// End of class declaration

Association Class Implementation
// Association is part of the structure package
class Association {

protected Object key;
protected Object value;

//pre: key != null
public Association (Object K, Object V) {

Assert.pre (K!=null, “Null key”);
key = K;
value = V;

}

public Object getKey() {return key;}
public Object getValue() {return value;}
public Object setValue(Object V) {

Object old = value;
value = V;
return old;

}
// Continued on next slide….

Association Class Implementation
public boolean equals(Object other) {

if (other instanceof Association) {
Association otherAssoc = (Association)other;
return getKey().equals(otherAssoc.getKey());

}
else return false;

}
}

• Notes
• The actual structure package code does NOT do the

instanceof check (but it should).
• Instead the method has a “pre-condition” comment that says

the other must be a non-null Association!
• We’ll return to the topic of pre- (and post-) conditions later

• Need to import structure.Association;

Summary/Take Aways
• Notes

• Association implements a (key,value) pair type
• It is part of Duane's structure package

• An array of associations allows the building of a simple
dictionary
• We only implemented the contains method
• We'll revisit Dictionaries soon to remedy this

• We were forced to store certain values as variables of type
Object then cast them back to their actual type before being
able to invoke methods of their actual type
• Given Object o = new Student("Bill J", 18, 'B');
• We can't write o.getName();
• We can write o.toString();

• Because Object class has a toString method
• And happily the correct version (Student) of toString will be used (if we wrote it!)

• We'll solve this casting "problem" in the next video….

Lecture Ends Here

19

