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BinaryTree Overheads?

• Total # “references” = 4n 
• Since each BinaryTree

maintains a reference to 
left, right, parent, value

• 2-4x more overhead than 
vector, SLL, array, …

• But trees capture 
successor and predecessor 
relationships that other 
data structures don’t… 
unless? 
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Consider the following (full) tree



Number the Nodes in BFS Order
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Store them in An Array at that Index!
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Array-Based Binary Trees

• How to encode structure of tree in an array:
• Put root at index 0
• Put the children of node at index i at:
• left(i): 2i+1
• right(i): 2i+2

• Put the parent of node j at:
• parent(j): (j-1)/2
• Note: integer truncation takes care of “rounding”



ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links
• No need for additional memory to be allocated/garbage 

collected
• Works well for full or complete trees

• Complete: All levels except last are full and all gaps are at right
– “A complete binary tree of height h is a full binary tree with 0 or more of the 

rightmost leaves of level h removed”

• Why bad?
• Could waste a lot of space
• Tree of height of n requires 2n+1-1 array slots even if only 

O(n) elements



We Leave Gaps for Nodes That 
Could Exist
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Final Thoughts

• For “dense” trees, an array representation is 
efficient
• There are many contexts where a dense tree is a

reasonable assumption

• If we can design a data structure that always 
preserves tree completeness, we should 
strongly consider an array representation
• (Remember this when we get to heaps!)


