
CSCI 136
Data Structures &

Advanced Programming

Alternative Tree Representations



BinaryTree Overheads?

• Total # “references” = 4n 
• Since each BinaryTree

maintains a reference to 
left, right, parent, value

• 2-4x more overhead than 
vector, SLL, array, …

• But trees capture 
successor and predecessor 
relationships that other 
data structures don’t… 
unless? 

Green

Blue Violet

Indigo Red

Orange Yellow



Consider the following (full) tree



Number the Nodes in BFS Order

0

1 2

3 4 5 6



Store them in An Array at that Index!

0

1 2

3 4 5 6

0 1 2 3 4 5 6



Array-Based Binary Trees

• How to encode structure of tree in an array:
• Put root at index 0
• Put the children of node at index i at:
• left(i): 2i+1
• right(i): 2i+2

• Put the parent of node j at:
• parent(j): (j-1)/2
• Note: integer truncation takes care of “rounding”



ArrayTree Tradeoffs

• Why are ArrayTrees good?
• Save space for links
• No need for additional memory to be allocated/garbage 

collected
• Works well for full or complete trees

• Complete: All levels except last are full and all gaps are at right
– “A complete binary tree of height h is a full binary tree with 0 or more of the 

rightmost leaves of level h removed”

• Why bad?
• Could waste a lot of space
• Tree of height of n requires 2n+1-1 array slots even if only 

O(n) elements



We Leave Gaps for Nodes That 
Could Exist

0

2

6

0 2 6



Final Thoughts

• For “dense” trees, an array representation is 
efficient
• There are many contexts where a dense tree is a

reasonable assumption

• If we can design a data structure that always 
preserves tree completeness, we should 
strongly consider an array representation
• (Remember this when we get to heaps!)


