CSCI 136
Data Structures &
Advanced Programming

Alternative Tree Representations

BinaryTree Overheads?

Green e Total # “references” = 4n
o T e Since each BinaryTree
Blue Violet maintains a reference to

/\ left, right, parent, value

Orange Yellow e 2-4x more overhead than

/\ vector, SLL, array, ...

Indigo Red * But trees capture
successor and predecessor
relationships that other
data structures don'’ t...
unless!?

Consider the following (full) tree

g &

Number the Nodes in BFS Order

Store them in An Array at that Index!

Array-Based Binary Trees

How to encode structure of tree in an array:
Put root at index 0

Put the children of node at index i at:
o left(i): 2i+|

 right(i): 2i+2

Put the parent of node j at:

e parent(j): (j-1)/2

* Note: integer truncation takes care of “rounding”

ArrayTree Tradeoffs

* Why are ArrayTrees good?

e Save space for links
* No need for additional memory to be allocated/garbage
collected

* Works well for full or complete trees

e Complete: All levels except last are full and all gaps are at right

— “A complete binary tree of height h is a full binary tree with 0 or more of the
rightmost leaves of level h removed”

* Why bad!?
e Could waste a lot of space

* Tree of height of n requires 2"*!-1 array slots even if only
O(n) elements

We Leave Gaps for Nodes That
Could Exist

6

|
-k

Final Thoughts

* For “dense” trees, an array representation is
efficient

* There are many contexts where a dense tree is a
reasonable assumption

* If we can design a data structure that always
preserves tree completeness, we should
strongly consider an array representation

* (Remember this when we get to heaps!)

