CSCI 136
Data Structures &
Advanced Programming

Lexicon Lab

Lexicon Lab

Lexicon

The vocabulary of a person, language, or branch of
knowledge - Oxford Languages

Implement a program that creates, updates, and
searches a Lexicon (set of words)

e Supports
* adding/removing words
e searching for words and prefixes
* reading words from files

* |terating over all words

Lexicon Lab

Good lexicons also support efficient algorithms for
* Finding all words with a given prefix

* Finding all words in a given range

* Suggesting corrections for misspelled words

* Wildcard searches
e A * wildcard refers to any set of 0 or more letters

e A ? wildcard refers to any set of O or | letters

e Example: bi*c?n* would match

— bicentennial, bicentennials, biconcave, biconvex, billycan, billycans
biomedicine

Lexicon Lab : Tries

* Lab Goal: Build a data structure that can
efficiently store and search a lexicon

e Using a special kind of tree called a trie

SENCENo

Lexicon Lab : Tries

e A trie is a tree that stores words where
e Each node holds a letter
* Some nodes are “word” nodes (dark circles)

* Any path from the root to a word node describes
one of the stored words

e All paths from the root form prefixes of stored
words (a word is considered a prefix of itself)

Tries

SN
SINCECRC

Now add “dot” and “news”

Now remove “not” and “zen”

Tries

The Lexicon Interface

An interface that provides the methods

public interface Lexicon {
public boolean addWord(String word);
public int addWordsFromFile(String filename);
public boolean removeWord(String word);
public int numWords();
public boolean containsWord(String word);
public boolean containsPrefix(String prefix);
public Iterator<String> iterator();
public Set<String> suggestCorrections(String

target, int maxDistance);

public Set<String> matchRegex(String pattern);

Lexicon Lab

* Implement the Lexicon interface using tries

* LexiconTrie implements the Lexicon Interface

* Fach node of the Trie is a LexiconNode
* Analogous to a SLL consisting of SLLNodes

* LexiconTrie supports
* adding/removing words
e searching for words and prefixes
* reading words from files

* Iterating over all words

And, optionally (not required!)
— spelling suggestions

— wildcard searches

The Starter Repository

Lexicon.java [Do not edit this file]

* The lexicon interface specification

LexiconTrie.java [Edit this file]

* A skeleton implementation of trie structure that
implements the Lexicon interface

LexiconNode.java [Edit this file]

e A skeleton implementation of the node structure for the
LexiconTrie

Main.java [No need to edit this file]

e The app that will allow a user to make queries of your
LexiconTrie

inputs directory : three sample dictionaries
The usual: PROBLEMS.md, README.md,

Tips
Start by implementing LexiconNode.java

* Add a main method to carefully test all of the
LexiconNode methods

Then implement LexiconTrie.java

e Add a main method to carefully test all of the LexiconTrie
methods

Develop and test code incrementally
Use the small dictionaries for initial debugging
* You can easily determine what the output should be

Several methods may be implemented recursively or
iteratively. Think about what works best for you!

