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Language Basics
Java is an objet-oriented programming language providing features that support

• Data abstraction

• Code reuse

• Modular development of large systems

• Automated low-level memory management

• Type-safety & Security

• Error-handling

• Multiple threads of computation

• Portability

While its syntax can be occasionally awkward, the benefits of the language over time have substantially outweighed
its weaknesses. This purpose of this document is to briefly summarize the essential elements of Java.

Executing a Java program that has been entered into a text file, say MyProgram.java, using a Unix command shell (a
program for entering commands in the Unix operating system) requires two steps.

Compiling javac MyProgram.java

Running java MyProgram

The javac command converts the Java source code to an intermediate low-level language called Java bytecode. The
bytecode will be placed into a file called MyProgram.class, (a Java class file). Assuming that the source code contained
a method (aka procedure/function) called main, the java∗ command will execute the code in the main method.
Example: Hello World.
There’s a lot of syntactic overhead involved in writing this simple program. This is not an uncommon situation with
programming languages that are designed for writing large, modular systems. You’ll get used to it quickly.
The next few topics talk about the non-object-oriented features of Java. After covering them, we’ll revisit them from
the perspective of object-oriented programming.

Data Types in Java
Programs store and manipulate data (sometimes called state). Data is held in variables. Java requires that every
variable be declared, that is, be given an explicit type, before it can be used. For example:

int age; // A simple integer value
float speed; // A numeric value with a fractional component
char grade; // A single character
String name; // A sequence of characters
int[] scores; // A one-dimensional array of integers

A variable can be declared without being assigned a value, but a value can be provided in the declaration:
∗Note that we omit the .class file suffix.
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int age = 21; // A simple integer value
float speed = 47.25; // A numeric value with a fractional component
char grade = ’A’: // A single character
String name = "Zeta"; // A sequence of characters
int[] scores = {97, 85, 100}; // A one-dimensional array of integers

Java provides four categories of types: primitive types, array types, class types and enum types.

Primitive Types
The primitive types are

• A collection of types for storing integer values, including: byte, short, int, long

• Two types for storing decimal values, including: float, double

• A type for logical values: bool. A variable of type bool has two possible values: true and false

• A type for storing a single character: char

All other types are essentially built upon these primitive types in one of two ways. An array type is a fixed-sized
collection of values of some other type. Each element of the collection is accessed using an integer index

int[] scores = {97, 85, 100,}; // A one-dimensional array of integers
System.out.println(scores[1]); // Prints the value 85: arrays start at index 0

Each of these primitive share some characteristics

• Simple storage requirements: A value has a fixed size that can fit into a single word (or less) of memory

• Values can be explicit represented in the language: 37, -41, 3.14159, false, ’Z’, ’w’, .... These representations
of specific values are called literals.

The String type is not primitive, although is unique among the non-primitive types that its values can be represented
in Java by literals: ”Hi there!”, ”Is 3 <2?”, ”gibberish”. We’ll talk a lot more about strings later.

Array Types
All values stored in an array must be of the same type† as the declared element type of the array.
Example: Sum: A program to add two numbers

• Version 1: Numbers are provided as command line arguments (via args[]) and stored in variables

• Version 2: Like Version 1, but allowing more than 2 values

• Version 3: Like Version 2, but using ”for-each” (iterator-based) form of for statement

• Version 4: Like Version 1, but uses a Scanner object to read from command line

• Version 5: LIke Version 2, but uses a Scanner object to read from command line

The Java class Arrays provides several utility methods for copying, searching, and sorting arrays.

Operators

Java provides a number of built-in operators (functions represented by 1 or 2 symbols) that perform basic computa-
tions. Here is a (non-exhaustive) list of frequently used binary (two argument) operators

Arithmetic binary operators +, -, *, /, %

Relational ==, !=, <, <=, >, >=
†Or, for class types, must be a subtype of that type.
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Logical &&, || (note: don’t confuse with & and |)

Assignment =, +=, -=, *=, /=, ...

Common unary operators include

Arithmetic -, ++, – (prefix and postfix)

Logical !

Notes

• There is no exponentiation operator in Java. The symbol ˆ, often used for exponentiation in other languages, is
the bitwise or operator in Java.

• For positive arguments, the remainder operator % is the same as the mathematical ’mod’ function, but for
negative arguments it is not. For example −8 mod 3 = 1 while −8%3 = −2. For inquiring minds, here’s the
rule: c = a%b means

1. a = kb+ c,

2. 0 ≤ |c| < |b|, and

3. sign(c) = sign(a) (i.e.: a and c are both positive, both negative, or both 0)

• Java provides an unambiguous operator precedence for all of its operatorsHigher precedence operators (e.g., *
or /) are evaluated before lower precedence operators (e.g, + or -); operators of equal precedence are evaluated
from left to right. For example, 3 + 2 ∗ 5 − 7/4 is equivalent to ((3 + (2 ∗ 5)) − (7/4)). When in doubt,
parenthesize as needed to make sure Java evaluates the way you want it to!

• The logical operator && has precedence over ||; also, these operators use short-circuit evaluation: that is, once
the value of the logical expression can be determined, no further evaluation takes place. For example, if x and y
are boolean variables and x has the value false, the expression x && y will return false without evaluating
y. This is useful in expressions such as (n != 0) && (k/n > 3), since it will prevent division by 0 if n
equals 0.

Expressions and Control Structures in Java
Java allows the computation of values by building expressions. Expressions use variables, operators, and method calls
to produce a value—the value of the expression. This value can then be assigned to a variable or passed to/returned
from a method. Expressions that produce a bool value (true/false) are called boolean (or logical) expressions
and can be used with conditional or looping constructs to determine the flow of control of the program. Some examples:

// Assume x has been declared as an int and y as a double
if (x != 0) y = 1.0/x;
else y = 0;

while (x > 0) {
System.out.println("x is positive");
x--; // decrement x

}

There are two conditional statements: if and switch. The if statement has the form

if (booleanExpression) // There is exactly 1 "if" clause
statement;

else if (booleanExpression) // There can be 0 or more "else if" clauses
statement;

else // There can be at most 1 "else" clause
statement;

3



The single ”statement” can be replaced with a block—a sequence of statements enclosed in brackets:

if (booleanExpression) {
statement1;
statement2;
...

}

In many situations, the condition being tested is the value of a variable of type int. In this case, one can use the
switch statement:

// Assume that x has been declared to be an int
switch (x) {
case 0:

System.out.println("Your card is a club");
break;

case 1:
System.out.println("Your card is a diamond");
break;

case 2:
System.out.println("Your card is a heart");
break;

case 3:
System.out.println("Your card is a spde");
break;

default:
System.out.println("Illegal value!");
break;

}

Switch statements can also be used for enumeration types and (with some restrictions) Strings.

In addition to the if and switch statements, which provide for conditional flow of control, Java also provides
several statements that provide for repeated execution of a block of code loops. We’ve already seen one of these, the
for statement. We’ll come back to it shortly, but first let’s see the two simpler looping constructs: the while and
do-while statements.
There are also two flavors of while loop:

• while ( continue? ) statement;

• do statement while ( continue? );

The latter form is guaranteed to execute the statement at least once, since the check happens after the statement.

The for statement has two basic forms

• for ( oneT imeInitializations, continue?, updateWork ) statement;

• for ( arrayV alueType identifier : arrayName ) statement;

Notes:

• The ’one time initializations’ and the ’update work’ components can each consist of multiple assignments sep-
arated by commas (but don’t get carried away!).

• The latter form is frequently used in situations in which we wish to access (but not modify) each element of the
array in order.
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The other fundamental control flow constructs provided by Java are the break, continue, and return statements.
The break statement is used to within a switch, for, while, or do-while control structure to exit that
structure and to transfer control to the first line of code after the exited structure. If instead, the goal is to stop
executing the current iteration of a loop‡ and begin the next iteration of the loop, then the continue statement is
used. Finally, as we’ll see later, the return transfers control from an executing method back to the code that invoked
that method.

So far, we have the ability to write programs that use primitive types and arrays using the main() method of a class.
If such a program gets to be too long, we can decompose it into smaller pieces using methods. Here’s an example of a
program that reads a list of integers from the command line and finds the smallest one.

// Sample code using static methods

class StaticMethods {

// Sample code using static methods

class StaticMethods {

public static int posOfMin(int[] nums) {
int pos = 0;
for( int i = 1; i < nums.length; i++ )

if ( nums[i] < nums[pos] ) pos = i;
return pos;

}

public static void main(String[] args) {
// quit if no integers entered on command line
if( args.length == 0 ) System.exit(0);

// create a list of integers
int[] numbers = new int[args.length];
int i = 0;
// Convert each command line (String) value to an int
for ( String s : args ) numbers[i++] = Integer.valueOf(s);

// Find the location in the array of the smallest int
int loc = posOfMin(numbers);
System.out.println("The smallest value is " + numbers[loc] +

"; it is in position " + loc);
}

We can create as many methods as we need to keep each method at a manageable (easy to understand, debug, maintain)
size. Like main(), posOfMin() is declared static. We’ll explain why in the next handout. Also, posOfMin()
computes and returns a value: the location in the array of the smallest element. We indicate that the method returns an
integer value by using the Java keyword int just before the name of the method.

Much of the real power of Java (and other object-oriented languages) stems from the ability to supplement the primitive
types with types of our own making. In Java, these are called class types and they are the topic of the next handout.

‡There is no point to allowing a continue statement in a switch structure, just as there’s no point to allowing a break statement in an if
structure.
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