
Computer Science 136
Sample Midterm exam

Possible answers

1. True/false statements (2 points each). Justify each answer with a sentence or two.

a. Two instances of class Association in the structure package are equal if and only if
their keys are equal, regardless of their values.

True, because the equals() method for an Association is implemented with
this behavior. We can verify this using the online structure5 documen-
tation, the structure5 source code, or the description on page 16 in the
textbook.

b. An instance variable declared as protected can be accessed by any method of the class
in which it is declared.

True. All instance variables can be accessed by any method of the class in
which it is declared. (Protected variables can also be accessed by classes
that are subclasses of the class in which it is declared). Chapter 1.3 in the
textbook describes the ways we often use the public, private, protected,
and static keywords within our classes (espeically in refence to the encap-
sulation), and Appendix B.8 gives more details about the specifics.

c. A binary search can locate a value in a sorted Vector in O(log n) time.

True. We can apply the “divide and conquer” approach to halve the search
size at each step. Since the list is sorted, we can rule out half of the values
in our search space simply by examining the middle value:

• if our target value is greater than (less than) the number, we know it
can’t be in the leftmost (rightmost) half of the list.

• The number of times you can divide a number n by the base b until
you get to 1 is logb(n).

• (In computer science, we commonly use 2 as the base in our logs,
so when we say “log(n)”, we mean log2(n) by default. If we want to
describe something other than log2, then we must specify the base of
the log explicitly.)

d. A binary search can locate a value in a sorted SinglyLinkedList in O(log n) time.

False. Since list elements are not “random access” (i.e., there is no direct
reference to the list’s middle node without traversing all of the links between
neighboring nodes starting at the head of the list), we cannot apply a binary
search effectively: we must walk through the list linearly in order to arrive
at the ”middle”. Even though we still only perform O(logn) comparisons,

1

http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Association.html#equals(java.lang.Object)
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Association.html#equals(java.lang.Object)
http://www.cs.williams.edu/~bailey/JavaStructures/Software.html


we must peform O(n) work to traverse the linked list in order to make each
comparison.

e. If a method that has no preconditions is called, all of that method’s postconditions
should be guaranteed to be true when the method returns.

True. Having no precondition implies that the method should work cor-
rectly for all inputs, and the method should terminate with its postcon-
dition true. Preconditions, postconditions, and assertions are covered in
Chapter 2. Note that preconditions and postconditions are simply ex-
pressed as comments, and they therefore cannot be enforced by the lan-
guage. It is our job as programmers to provide accurate preconditions and
postconditions. Assertions, on the other hand, let us verify that certain
assumptions hold true at program runtime.

f. The Unix command cp /path/to/directory changes your current working directory to
/path/to/directory.

False. cp is used to copy files and directories, cd changes your current
working directory.

g. Instance variables are specified in an interface file.

False. Instance variables are specified in the class definition, not in the
interface.

An interface is like a contract. It provides a list of methods that an im-
plementing class must complete, but it does not specify any details as to
how.

An abstract class may provide some implementation.

Interfaces, abstract classes, and ways to use them in program design are
covered in Chapter 7.

2. Consider the following Java program:

class Container {

protected int count;

protected static int staticCount;

public Container(int initial) {

count = initial;

staticCount = initial;

}

public void setValue(int value) {

count = value;

staticCount = value;

2



}

public int getCount() {

return count;

}

public int getStaticCount() {

return staticCount;

}

}

class WhatsStatic {

public static void main(String[] args) {

Container c1 = new Container(17);

System.out.println("c1 count=" +c1.getCount()+

", staticCount=" + c1.getStaticCount());

Container c2 = new Container(23);

System.out.println("c1 count=" +c1.getCount()+

", staticCount=" + c1.getStaticCount());

System.out.println("c2 count=" +c2.getCount()+

", staticCount=" + c2.getStaticCount());

c1.setValue(99);

System.out.println("c1 count=" +c1.getCount()+

", staticCount=" + c1.getStaticCount());

System.out.println("c2 count=" +c2.getCount()+

", staticCount=" + c2.getStaticCount());

c2.setValue(77);

System.out.println("c1 count=" +c1.getCount()+

", staticCount=" + c1.getStaticCount());

System.out.println("c2 count=" +c2.getCount()+

", staticCount=" + c2.getStaticCount());

}

}

a. What will the output be when the program is run (java WhatsStatic)? Assume no
exceptions occur. (4 points)

c1 count=17, staticCount=17

c1 count=17, staticCount=23

c2 count=23, staticCount=23

c1 count=99, staticCount=99

c2 count=23, staticCount=99

3



c1 count=99, staticCount=77

c2 count=77, staticCount=77

b. What memory is allocated for Containers c1 and c2 at the time the line c1.setValue(99)
is executed? Show any existing local variables and instance variables. (6 points)

The references to our two objects are stored in c1 and c2, which are local
variables to the main method. The two objects themselves exist, each with its
own copy of instance variable count. They share one copy of staticCount.

3. In this problem you are to design a Java interface and class for a data structure which
represents sets of Strings. As usual for sets, no repeated elements are allowed. Thus, the
collection "Propser", "Anya", "Lisa", "Karl", "Isabella" is a legal set, but "Bill",
"Duane", "Bill" is not. This data structure will have two methods:

• void insert(String myString) adds myString to the set.

• boolean contains(String myString) returns a boolean value indicating if myString
is an element of the set.

a. Write a legal Java interface called StringSetInterface for this data structure. Include
preconditions and postconditions for the methods. (6 points)

public interface StringSetInterface {

public void insert(String myString);

// Pre: none. (OR Pre: myString is not in the set)

// Post: myString is present in the set

public boolean contains(String myString);

// Pre: none.

// Post: return value indicates if myString was found in the set

}

It is up to you if you want to make insert of a String already in the set an
error condition or just have it return.

b. Suppose we decide to implement StringSetInterface by a class in which a singly-linked
list holds all of the elements. Write the definition of this class. This should be a full and
legal Java class definition with all method bodies filled in. Don’t forget to declare instance
variables, include a constructor, and use qualifiers such as public and protected when
appropriate. You need not repeat your pre- and post- conditions from part a. Please call
your class StringSet. (10 points)

4



public class StringSet implements StringSetInterface {

protected List stringList;

public StringSet() {

stringList = new SinglyLinkedList();

}

public void insert(String myString) {

// this corresponds to the no precondition answer above

if (!contains(myString)) {

stringList.add(new String(myString));

}

}

public boolean contains(char myString) {

return stringList.contains(myString);

}

}

c. If StringSet is implemented as in part b, what would the worst-case time complexity be
for the insert operation when the set has n elements? (Use “Big O” notation.) (4 points)

O(n): the contains operation is O(n), which is more significant than the O(1)
list insertion.

d. Suppose we design an alternative implementation in which the set is represented by
a Vector<String> called strVec. What is the worse-case complexity of insert with this
representation? (6 points)

It is still O(n): we don’t benefit from a Vector’s ability to do efficient random
accesses in this case. In an unsorted Vector, the contains operation is O(n), which
is more significant than the cost to add at the end of the Vector. If the vector
is sorted, we can use binary search to check whether the String is already in the
set, but we have to move elements to make room for any new String, which is
O(n) in the worst case.

4. (20 points) Consider the following class, ReversibleList, that extends the Singly-

LinkedList class by adding a method for reversing the list.

public class ReversibleList extends SinglyLinkedList {

public ReversibleList() {

super();

}

5



public void reverse() {

// Post: list is reversed.

if (head != null)

head = recReverse(head);

}

private static SinglyLinkedListNode<E> recReverse(SinglyLinkedListNode<E> current) {

// Pre: current is not null.

// Post: list headed by current is reversed; and first Node in that list is returned.

if (current.next() == null) { // Single-node list

return current;

} else {

SinglyLinkedListNode<E> newHead = recReverse(current.next()); // Explain

// current.next() now points to final node in reversed list!

current.next().setNext(current); // Explain

current.setNext(null); // Explain

return newHead;

}

}

}

a. What is the running time of reverse() (3 points)?

O(n).

b. Prove using mathematical induction that your answer to part a is correct. (12 points)

We proceed by counting calls to the setNext() method, and claim that there
are 2(n− 1) calls needed to reverse a list of size n. We proceed by mathematical
induction on n.

• Base: For a list of size 1, there are 2(1 − 1) = 0 calls.

• Inductive hypothesis: Assume it takes 2(k − 1) calls to setNext(), where
k < n.

• Inductive step: For a list of size n, we know by the inductive hypothesis
that the recursive call to recReverse() makes 2(n−2) calls to setNext(). We
make two additional calls, giving a total of 2(n − 2) + 2 = 2(n − 1), which is
O(n).

5. Growth of functions. Using “Big O” notation, give the rate of growth for each of these
functions. Justify your answers. (3 points each, 12 total)

6



a. f(x) = x2 + 17x + 2001

O(x2), since we only care about the dominant term.

b. f(x) = cos(x4 + log x)

O(1), since cos always remains in [−1, 1].

c. f(x) = 7x when x is odd, f(x) = x
7

when x is even.

O(x), since x
7

is always less than 7x. and 7x is O(x).

d. f(x) = 5x3 for x < 23, f(x) = 37 otherwise.

O(1), since it only matters what happens as x gets large.

6. Searching and sorting.

a. SelectionSort and Insertion both take O(n2) in the worst case. However, they have
different best-case running times. Explain why this difference occurs; include a
description of examples that have best-case performance.
SelectionSort assumes the whole array is unsorted. It iteratively scans
the unsorted portion of the array for the largest element, then places
the largest element at the end of the unsorted portion. This reduces
the unsorted region’s size by 1. This algorithm is data independent, so
it is always O(n2).
Insertion also assumes the whole array is unsorted. It iteratively searches
the unsorted portion of the array for the first element that is out of
place, then places it in the correct location in the sorted portion. If the
array is already sorted, then there are no elements to move, reducing
the runtime of InsertionSort to O(n): a single pass through the array
detects that it is sorted.

b. When applied to an array, a MergeSort has three phases:

Split: Find the middle element of the array

Recursively Solve: MergeSort each half of the array

Combine: Merge the two sorted halves of the array into a single sorted array

As we’ve seen, the Split phase takes O(1) time while the Combine phase takes
O(n) time. Suppose we want to implement MergeSort for a SinglyLinkedList data
structure (with tail pointers). Describe what would be involved in implementing
the Split and Combine phases and how much time (in the O() worst-case sense)
each phase would take. Would such a MergeSort still take O(n log n) time? Why?
Unlike arrays, SLLs are not random-access data structures: to find an
element in a SLL, you must traverse the list element by element, which
is O(n). But once you have a pointer to an element, splitting the list is
O(1), since you just unlink a node from its predecessor, and add it the
head of a new list. Thus, splitting takes O(n).
Merging two SLLs is still O(n): you must walk through the list nodes

7



in order, compare nodes, and add the smallest to a sorted list.

The runtime is still O(n log n) because you have O(log n) levels and you
do O(n) work at each level. The difference is that you do O(n) work
at each level on the “way down” (splitting) and on the “way back up”
(merging). Since we ignore constants, doubling the work does not affect
the big-O runtime: the factor of 2 is independent of n.

8


