
CSCI 136
Data Structures &

Advanced Programming

Fall 2020
Instructors

Bill Jannen & Bill Lenhart

2

Outline

• Course Materials and Tools

• Course Preview

Course Materials and Tools

3

4

Where is everything!?

• GLOW
• CSCI 136 R1 (the 'lecture' section)

• Link to course website

• Announcements, surveys, …

• CSCI 136 R2/03/R4 (the conference sections) and
R5/R6/R7/R8/R9 (the lab sections)
• Zoom meeting information

• Course website:
• http://cs.williams.edu/~cs136/index.html

• Syllabus, schedules, links to (virtually) all content

http://cs.williams.edu/~cs136/index.html

5

Tools
• GLOW/Course Website

• Course content and announcements

• Zoom
• Remote conferences, labs, faculty/TA office hours

• Email
• Announcements, formal communication with instructors/staff

• Slack
• Quick messaging, conversation threads

• Atom/Git/Java
• Your programming environment

• Williams VPN
• Only needed to interact with GitLab server

Zoom Etiquette

6

Course Preview

7

8

Why Take CS136?

• To learn about:
• Data Structures

• Effective ways to store and manipulate data

• Advanced Programming
• Combine data structures, programming techniques, and

algorithmic design to write programs that solve
interesting and important problems

• Basics of Algorithm Analysis
• Measuring algorithm complexity
• Establishing algorithm correctness

9

This is So Goals*

• Identify basic data structures
• list, stack, array, tree, graph, hash table, and more

• Implement these structures in Java
• Learn how to evaluate and visualize data structures

• Linked lists and arrays both represent lists of items
• Different representations of data
• Different algorithms for manipulating/accessing/storing data

• Learn how to design larger programs that are easier to
modify, extend, and debug

• Have fun!

*Bill L has a college-aged daughter....

10

Course Outline

• Java review
• Basic structures

• Lists, vectors, queues, stacks

• Advanced structures
• Graphs, heaps, trees, dictionaries

• Foundations (throughout semester)
• Vocabulary
• Analysis tools
• Recursion & Induction
• Methodology

11

Why Java?

• There are lots of programming languages…
• C, Pascal, C++, Java, C#, Python

• Java was designed in 1990s to support Internet
programming

• Why Java?
• It’s easier (than predecessors like C++) to write correct

programs
• Object-oriented – good for large systems
• Good support for abstraction, extension, modularization
• Automatically handles low-level memory management
• Very portable

12

Common Themes

1. Identify data for problem
2. Identify questions to answer about data
3. Design data structures and algorithms to answer

questions correctly and efficiently
§ Note: not all correct solutions are efficient
§ And vice versa!

4. Implement solutions that are robust, adaptable, and
reusable

Example: Shortest Paths in Networks

13

14

Finding Shortest Paths

• The data: road segments
• Road segment: Source, destination, length (weight)

• The question
• Given source and destination, compute the shortest path

from source

• The algorithm: Dijkstra’s Algorithm

• The data structures (spoiler alert!)
• Graph: holds the road network in some useful form

• Priority Queue: holds not-yet-inspected edges
• Also uses: Lists, arrays, stacks, ...

• A demo….

