
CSCI 136
Data Structures &

Advanced Programming

Lecture 9
Fall 2019

Instructors: Bill & Sam

Administrative Details

• Remember: First Problem Set due at beginning
of class on Friday

• Lab 3 Today!

• Come to lab with a plan!
• Answer questions before lab

Last Time

• Weak induction
• Recursion

3

Today’s Outline

• Finish Binary Search & Strong Induction
• Recursion example: longest increasing

subsequence
• Basic Sorting
• Insertion, Selection Sorts
• Including proofs of correctness

4

Example: Binary Search

• Given an array a[] of positive integers in increasing
order, and an integer x, find location of x in a[].
• Take “indexOf” approach: return −1 if x is not in a[]

protected static int recBinarySearch(int a[], int value,
int low, int high) {

if (low > high) return -1;
else {

int mid = (low + high) / 2; //find midpoint
if (a[mid] == value) return mid; //first comparison

//second comparison
else if (a[mid] < value) //search upper half
return recBinarySearch(a, value, mid + 1, high);
else //search lower half

return recBinarySearch(a, value, low, mid - 1);
}

Binary Search takes O(log n) Time

Can we use induction to prove this?
• Claim: If n = high - low +1, then recBinSearch

performs at most c (1 + log 𝑛) operations, where c is
twice the number of statements in recBinSearch

• Base case: 𝑛 = 1: Then low = high so only c
statements execute (method runs twice) and 𝑐 ≤
𝑐(1 + log 1)

• Assume that claim holds for some 𝑛 ≥ 1, does it
hold for 𝑛 + 1? [Note: 𝑛 + 1 > 1, so low < high]

• Problem: Recursive call is not on n---it’s on n/2.

• Solution: We need a better version of the PMI….

Mathematical Induction

Principle of Mathematical Induction (Strong)
Let P(0), P(1), P(2), ... be a sequence of statements
(each of which could be either true or false).
Suppose that, for some 𝑘 ≥ 0

1. P(0), P(1), ... , P(k) are true, and
2. For every 𝑛 ≥ 𝑘, if P(1), P(2), ... , P(n) are true, then

so is P(n+1).

Then all of the statements are true!

Binary Search takes O(log n) Time

Try again now:
• Assume that for some 𝑛 ≥ 1, the claim holds for all
𝑘 ≤ 𝑛, does claim hold for 𝑛 + 1?

• Yes! Either
• x = a[mid], so a constant number of operations are

performed, or

• RecBinSearch is called on a sub-array of size at most n/2,
and by induction, at most c(1 + log (n/2)) operations are
performed.
• This gives a total of at most c + c(1 + log(n/2)) = c + c(log(2) +

log(n/2)) = c + c(log n) = c(1 + log n) statements

Notes on Induction

• Whenver induction is needed, strong induction can be
used

• The numbering of the propositions doesn’t need to
start at 0

• The number of base cases depends on the problem at
hand
• Enough are needed to guarantee that the smallest non-base

case can be proven using only the base cases

Longest Increasing Subsequence

• Given an array a[] of positive integers, find the length
of the largest subsequence of (not necessary
consecutive) elements such that for any pair a[i], a[j]
in the subsequence, if i<j, then a[i] < a[j].

• Example 10 7 12 3 5 11 8 9 1 15 has 3 5 8 9 15 as its
longest increasing subsequence (LIS), so length is 5.

• How could we find the LIS length of a[]?
• How could we prove our method was correct?

• Let’s think....

Longest Increasing Subsequence
• We’ll assume all numbers are positive
• (Brilliant) Observation: A LIS for a[1 ... n] either

contains a[1] … or it doesn’t.
• Therefore, a LIS for a[1 ... n] either

• Doesn’t contain a[1] and is just a LIS for a[2 ... n]
• Does contain a[1], along with an LIS for a[2 ... n] such that

every element in the LIS is > a[1], or

• So the LIS length is either
• Or the LIS length for a[2..n]
• 1 + LIS length for a[2..n] where every element in LIS is > a[1]

• So the problem to solve is: find the LISL for a[] given that every
element in LIS is at least some threshold value

Longest Increasing Subsequence
// Pre: curr < arr.length

// Post: returns length of LIS of arr[curr…] having all > threshold
public static int lislHelper(int[] arr, int curr, int threshold) {

if(curr == arr.length -1)
if (return arr[curr] > threshold) return 1;

else return 0;
else

int usingFirst = 0;

if(arr[curr] > threshold)
usingFirst = 1 + lislHelper(arr, curr+1, arr[curr]);

int notUsingFirst = lislHelper(arr, curr+1, threshold);
return Math.max(usingFirst, notUsingFirst);

}

Sorting Intro: Bubble Sort
• Simple sorting algorithm that works by repeatedly

stepping through the list to be sorted, comparing
two items at a time and swapping them if they are in
the wrong order

• Repeated until no swaps are needed
• Gets its name from the way larger elements "bubble"

to the end of the list
• Inefficient (both in theory and practice)
• Details in textbook

Sorting Intro: Insertion Sort

• 5 7 0 3 4 2 6 1
• 5 7 0 3 4 2 6 1
• 0 5 7 3 4 2 6 1
• 0 3 5 7 4 2 6 1
• 0 3 4 5 7 2 6 1
• 0 2 3 4 5 7 6 1
• 0 2 3 4 5 6 7 1
• 0 1 2 3 4 5 6 7

http://www.visualgo.net/sorting

http://www.visualgo.net/sorting

Sorting Intro : Insertion Sort
• Simple sorting algorithm that works by building a

sorted list one entry at a time
• Less efficient on large lists than more advanced

algorithms
• Advantages:

• Simple to implement and efficient on small lists
• Efficient on data sets which are already mostly sorted

• Time complexity
• O(n2)

• Space complexity
• O(n)

Sorting Intro : Insertion Sort

void iisort(int[] a, int n){
int i,j;
for(i=1;i<n;i++)

for(j=i; j>0 && a[j-1] > a[j];j--)
swap(j, j-1, a);

}

Sorting Intro : Selection Sort

• 11 3 27 5 16
• 11 3 16 5 27
• 11 3 5 16 27
• 5 3 11 16 27
• 3 5 11 16 27

• Time Complexity:
• O(n2)

• Space Complexity:
• O(n)

http://www.visualgo.net/sorting
(demo is “min” version)

http://www.visualgo.net/sorting

Sorting Intro : Selection Sort

• Similar to insertion sort
• Easier to show correct (?)

• The algorithm works as follows:
• Find the maximum value in the list

• Swap it with the value in the last position
• Repeat the steps above for remainder of the list (ending at

the second to last position)

Some Skill Testing!

19

Selection sort uses two utility methods

Uses a swap method
private static void swap(int[]A, int i, int j) {

int temp = a[i];
A[i] = A[j];
A[j] = temp;

}

And a max-finding method
// Find position of largest value in A[0 .. last]
public static int findPosOfMax(int[] A, int last) {

int maxPos = 0; // A wild guess
for(int i = 1; i <= last; i++)

if (A[maxPos] < A[i]) maxPos= i;
return maxPos;

}

Some Skill Testing!

20

An Iterative Selection Sort
public static void selectionSort(int[] A) {

for(int i = A.length - 1; i>0; i--)
int big= findPosOfMax(A,i);
swap(A, i, big);

}
}

A Recursive Selection Sort (just the helper method)
public static void recSSHelper(int[] A, int last) {

if(last == 0) return; // base case

int big= findPosOfMax(A, last);
swap(A,big,last);
recSSHelper(A, last-1);

}

Some Skill Testing!

• Prove: recSSHelper (A, last) sorts elements
A[0]…A[last].
• Assume that maxLocation(A, last) is correct

• Proof:
• Base case: last = 0.
• Induction Hypothesis:

• For k<last, recSSHelper sorts A[0]…A[k].

• Prove for last:
• Note: Using Second Principle of Induction (Strong)

21

Some Skill Testing!

• After call to findPosOfMax(A, last):
• ‘big’ is location of largest A[0..last]

• That value is swapped with A[last]:
• Rest of elements are A[0]..A[last-1].

• Since last - 1< last, then by induction
• recSSHelper(A, last-1) sorts A[0]..A[last-1].

• Thus A[0]..A[last-1] are in increasing order
• and A[last-1] ≤ A[last].

• So, A[0]…A[last] are sorted.
22

Making Sorting Generic

• We need comparable items
• Unlike with equality testing, the Object class

doesn’t define a “compare()” method 😟
• We want a uniform way of saying objects can

be compared, so we can write generic
versions of methods like binary search

• Use an interface!
• Two approaches
• Comparable interface
• Comparator interface

Java Interfaces : Motivating Example

• Idea: Implement a class that describes a single
playing card (e.g., “Queen of Diamonds”)

• Start simple: a single class – BasicCard
• Think about alternative implementations
• Use an interface to allow implementation

independent coding
• Let’s look at BasicCard

24

Aside : Enum Types are Class Types
enum Rank { TWO, THREE, FOUR, FIVE, SIX, SEVEN,

EIGHT, NINE, TEN, JACK, QUEEN, KING, ACE;
}

Notes

• Creates an ordered sequence of named constants
• Can find position of an enum value in sequence

• int i = r.ordinal(); // r is of type Rank

• Can get an array of all values in the enum
• Rank[] allRanks = Rank.values();

• Can use in for loops
• for (Rank r : Rank.values()) { ... }

• Can have its own instance variables and methods 25

26

Implementing a Card Object

• Think before we code!
• Many ways to implement a card
• An index from 0 to 51; a rank and a suit, ...

• Start general.
• Build an interface that advertises all public features

of a card
• Not an implementation (define methods, but don’t

include code)

• Then get specific.
• Build specific implementation of a card using our

general card interface

27

Start General: Card: An Interface

• What data do we have to represent?
• Properties of cards
• How can we represent these properties?

• There are often multiple options—name some!

• What methods do we need?
• Capabilities of cards

• Do we need accessor and/or mutator methods?

*

A Card Interface
public interface Card {

// Methods - must be public
public Suit getSuit();
public Rank getRank();

}

Notes

• Don’t allow card to change its value
• Only need accessor methods

• Support enums for rank and suit

28

29

Get Specific: Card Implementations

• Now suppose we want to build a specific card
object

• We want to use the properties/capabilities
defined in our interface
• That is, we want to implement the interface

public class CardRankSuit implements Card {
. . .

}

The Enums for Cards
public enum Suit {

CLUBS, DIAMONDS, HEARTS, SPADES; // the values

public String toString() {
switch (this) {
case CLUBS : return "clubs";
case DIAMONDS : return "diamonds";
case HEARTS : return "hearts";
case SPADES : return "spades";
}
return "Bad suit!";

}
}

A similar declaration is defined for Rank 30

A First Card Implementation
public class CardRankSuit implements Card {
// instance variables

protected Suit suit;
protected Rank rank;

// Constructors
public CardRankSuit(Rank r, Suit s)

{suit = r; rank = s;}
// returns suit of card

public Suit getSuit() { return suit;}
// returns rank of card

public Rank getRank() { return rank;}
// create String representation of card
public String toString()

{return getRank() + " of " + getSuit();}
}

31

A Second Card Implementation
public class Card52 implements Card {
// instance variables
protected int code; // 0 <= code < 52;
// rank is code/13 and suit is code%13
// Constructors
public CardRankSuit(int index)

{code = index;}
// returns suit of card

public Suit getSuit() {// see sample code}
// returns rank of card

public Rank getRank() {// see sample code}
// create String representation of card
public String toString()

{return getRank() + " of " + getSuit();}
}

32

Improvements to Card52
Add back a constructor with Rank/Suit parameters
public class Card52v2 implements Card {
...
public Card52v2(Rank theRank, Suit theSuit) {
code = theSuit.ordinal() * 13 + theRank.ordinal();

}

Replace switch statements in “get” methods...
public Suit getSuit() {

return Suit.value(code / 13);}
public Rank getRank() {

return Rank.value(code % 13);}

...by adding value() method to each enum
public static Rank value(int ordVal) {

return vals[ordVal];} 33

Interfaces: Worth Noting

• Interface methods are always public
• Java does not allow non-public methods in interfaces

• Interface instance variables are always static final
• static variables are shared across instances

• final variables are constants: they can’t change value

• Most classes contain constructors; interfaces do not!
• Can declare interface objects (just like class objects)

but cannot instantiate (“new”) them

34

Comparable Interface

• Java provides an interface for comparisons between objects
• Provides a replacement for “<“ and “>” in recBinarySearch

• Java provides the Comparable interface, which specifies a
method compareTo()
• Any class that implements Comparable must provide compareTo()

public interface Comparable<T> {
//post: return < 0 if this smaller than other

return 0 if this equal to other
return > 0 if this greater than other

int compareTo(T other);
}

Comparable Interface

• Many Java-provided classes implement Comparable
• String (alphabetical order)

• Wrapper classes: Integer, Character, Boolean

• All Enum classes

• We can write methods that work on any type that
implements Comparable
• Example: RecBinSearch.java and BinSearchComparable.java

compareTo in Card Example

We could write

public class CardRankSuit implements
Comparable<CardRankSuit> {

public int compareTo(CardRankSuit other) {
if (this.getSuit() != other.getSuit())

return getSuit().compareTo(other.Suit());
else

return getRank().compareTo(other.getRank());
}

// rest of code for the class....
}

Comparable & compareTo

• The Comparable interface (Comparable<T>) is part of the
java.lang (not structure5) package.

• Other Java-provided structures can take advantage of objects
that implement Comparable
• See the Arrays class in java.util
• Example JavaArraysBinSearch

• Users of Comparable are urged to ensure that compareTo()
and equals() are consistent. That is,
• x.compareTo(y) == 0 exactly when x.equals(y) == true

• Note that Comparable limits user to a single ordering
• The syntax can get kind of dense

• See BinSearchComparable.java : a generic binary search method
• And even more cumbersome….

ComparableAssociation
• Suppose we want an ordered Dictionary, so that we can use binary

search instead of linear
• Structure5 provides a ComparableAssociation class that

implements Comparable.
• The class declaration for ComparableAssociation is

…wait for it...
public class ComparableAssociation<K extends Comparable<K>, V>

Extends Association<K,V> implements
Comparable<ComparableAssociation<K,V>>

(Yikes!)
• Example: Since Integer implements Comparable, we can write

• ComparableAssociation<Integer, String> myAssoc =
new ComparableAssociation(new Integer(567), “Bob”);

• We could then use Arrays.sort on an array of these

Comparators

• Limitations with Comparable interface
• Only permits one order between objects
• What if it isn’t the desired ordering?

• What if it isn’t implemented?

• Solution: Comparators

40

Comparators (Ch 6.8)

• A comparator is an object that contains a method that
is capable of comparing two objects

• Sorting methods can be written to apply a comparator
to two objects when a comparison is to be performed

• Different comparators can be applied to the same data
to sort in different orders or on different keys

public interface Comparator <E> {
// pre: a and b are valid objects
// post: returns a value <, =, or > than 0 determined by
// whether a is less than, equal to, or greater than b
public int compare(E a, E b);

}

41

Example
class Patient {

protected int age;
protected String name;
public Patient (String s, int a) {name = s; age = a;}
public String getName() { return name; }
public int getAge() {return age;}

}

class NameComparator implements Comparator <Patient>{
public int compare(Patient a, Patient b) {

return a.getName().compareTo(b.getName());
}

} // Note: No constructor; a “do-nothing” constructor is added by Java

public void sort(T a[], Comparator<T> c) {
…
if (c.compare(a[i], a[max]) > 0) {…}

}

sort(patients, new NameComparator());

Note that Patient does
not implement
Comparable or
Comparator!

42

Comparable vs Comparator
• Comparable Interface for class X
• Permits just one order between objects of class X
• Class X must implement a compareTo method

• Changing order requires rewriting compareTo
• And recompiling class X

• Comparator Interface
• Allows creation of “Compator classes” for class X
• Class X isn’t changed or recompiled
• Multiple Comparators for X can be developed

• Sort Strings by length (alphabetically for equal-length)
43

Selection Sort with Comparator

44

public static <E> int findPosOfMax(E[] a, int last,
Comparator<E> c) {

int maxPos = 0 // A wild guess
for(int i = 1; i <= last; i++)

if (c.compare(a[maxPos], a[i]) < 0) maxPos = i;
return maxPos;

}
public static <E> void selectionSort(E[] a, Comparator<E> c) {

for(int i = a.length - 1; i>0; i--) {
int big= findPosOfMin(a,i,c);
swap(a, i, big);

}
}

• The same array can be sorted in multiple ways by passing different
Comparator<E> values to the sort method;

Merge Sort

• A divide and conquer algorithm
• Merge sort works as follows:

• If the list is of length 0 or 1, then it is already sorted.
• Divide the unsorted list into two sublists of about half the

size of original list.
• Sort each sublist recursively by re-applying merge sort.
• Merge the two sublists back into one sorted list.

• Time Complexity?
• Spoiler Alert! We’ll see that it’s O(n log n)

• Space Complexity?
• O(n)

45

Merge Sort

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split

• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge

• [1 8 9 14 16 17 29 39] merge

46

Merge Sort
• How would we implement it?
• First pass…
// recursively mergesorts A[from .. To] “in place”
void recMergeSortHelper(A[], int from, int to)

if (from ≤ to)
mid = (from + to)/2
recMergeSortHelper(A, from, mid)
recMergeSortHelper(A, mid+1, to)
merge(A, from, to)

But merge hides a number of important details….
47

Merge Sort
• How would we implement it?

• Review MergeSort.java
• Note carefully how temp array is used to reduce copying
• Make sure the data is in the correct array!

• Time Complexity?
• Takes at most 2k comparisons to merge two lists of size k
• Number of splits/merges for list of size n is log n
• Claim: At most time O(n log n)…We’ll see soon...

• Space Complexity?
• O(n)?
• Need an extra array, so really O(2n)! But O(2n) = O(n)

48

Merge Sort = O(n log n)

• [8 14 29 1 17 39 16 9]
• [8 14 29 1] [17 39 16 9] split

• [8 14] [29 1] [17 39] [16 9] split
• [8] [14] [29] [1] [17] [39] [16] [9] split
• [8 14] [1 29] [17 39] [9 16] merge
• [1 8 14 29] [9 16 17 39] merge

• [1 8 9 14 16 17 29 39] merge

log n

log n

merge takes at most n comparisons per line

49

Time Complexity Proof

• Prove for n = 2k (true for other n but harder)
• That is, MergeSort for performs at most
• n ∗ log (n) = 2k ∗ k comparisions of elements

• Base case 𝑘 ≤ 1: 0 comparisons: 0 < 1 ∗ 23 ✓

• Induction Step: Suppose true for all integers
smaller than k. Let T(k) be # of comparisons
for 2k elements. Then

• 𝑇 𝑘 ≤ 25 + 2 ∗ 𝑇 𝑘 − 1
≤ 25 + 2 𝑘 − 1 2563 ≤ 𝑘25 50

Merge Sort

• Unlike Bubble, Insertion, and Selection sort,
Merge sort is a divide and conquer algorithm
• Bubble, Insertion, Selection sort complexity: O(n2)

• Merge sort complexity: O(n log n)

• Are there any problems or limitations with
Merge sort?

• Why would we ever use any other algorithm
for sorting?

51

Problems with Merge Sort

• Need extra temporary array
• If data set is large, this could be a problem

• Waste time copying values back and forth
between original array and temporary array

• Can we avoid this?

52

Quick Sort

• Quick sort is designed to behave much like
Merge sort, without requiring extra storage
space

Merge Sort Quick Sort

Divide list in half Partition* list into 2 parts

Sort halves Sort parts

Merge halves Join* sorted parts

53

Recall Merge Sort
private static void mergeSortRecursive(Comparable data[],

Comparable temp[], int low, int high) {
int n = high-low+1;
int middle = low + n/2;
int i;

if (n < 2) return;
// move lower half of data into temporary storage
for (i = low; i < middle; i++) {

temp[i] = data[i];
}
// sort lower half of array
mergeSortRecursive(temp,data,low,middle-1);
// sort upper half of array
mergeSortRecursive(data,temp,middle,high);
// merge halves together
merge(data,temp,low,middle,high);

}
54

Quick Sort

public void quickSortRecursive(Comparable data[],

int low, int high) {
// pre: low <= high
// post: data[low..high] in ascending order

int pivot;
if (low >= high) return;

/* 1 - place pivot */
pivot = partition(data, low, high);
/* 2 - sort small */
quickSortRecursive(data, low, pivot-1);
/* 3 - sort large */
quickSortRecursive(data, pivot+1, high);

}

55

Partition

1. Put first element (pivot) into sorted position
2. All to the left of “pivot” are smaller and all

to the right are larger

3. Return index of “pivot”

56

Partition
int partition(int data[], int left, int right) {

while (true) {
while (left < right && data[left] < data[right])

right--;
if (left < right) {

swap(data,left++,right);
} else {

return left;
}

while (left < right && data[left] < data[right])
left++;

if (left < right) {
swap(data,left,right--);

} else {
return right;

}
}

} 57

Complexity

• Time:
• Partition is O(n)
• If partition breaks list exactly in half, same as

merge sort, so O(n log n)
• If data is already sorted, partition splits list into

groups of 1 and n-1, so O(n2)

• Space:
• O(n) (so is MergSort)

• In fact, it’s n + c compared to 2n + c for MergeSort

58

Merge vs. Quick

0

500

1000

1500

2000

2500

3000

3500

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

MERGE

QUICK

59

Food for Thought…

• How to avoid picking a bad pivot value?
• Pick median of 3 elements for pivot (heuristic!)

• Combine selection sort with quick sort
• For small n, selection sort is faster

• Switch to selection sort when elements is <= 7
• Switch to selection/insertion sort when the list is

almost sorted (partitions are very unbalanced)
• Heuristic!

60

Sorting Wrapup
Time Space

Bubble Worst: O(n2)
Best: O(n) - if “optimized”

O(n) : n + c

Insertion Worst: O(n2)
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best:: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c

61

More Skill-Testing
(Try these at home)

Given the following list of integers:
9 5 6 1 10 15 2 4

1) Sort the list using Insertion sort. . Show your work!
2) Sort the list using Merge sort. . Show your work!
3) Verify the best and worst case time and space

complexity for each of these sorting algorithms as
well as for selection sort.

62

