CSCI 136
Data Structures &
Advanced Programming

Lecture 9

Fall 2019
Instructors: B&S

Administrative Details

e Remember: First Problem Set is online

* Due at beginning of class on Friday

e Lab 3 Today!

* You may work with a partner
* Come to lab with a plan!

* Answer questions before lab

e Lab | has been returned....

Last Time

e Mathematical Induction

* For algorithm run-time and correctness

* More About Recursion

e Recursion on arrays; helper methods

Today s Outline

* Final Tips on Induction

* Basic Sorting
e Bubble, Insertion, Selection Sorts
* Including proofs of correctness
* The Comparable Interface
e An Extended Example: A Playing Card Type

e Making Search Generic

Notes on Induction

e Whenver induction is needed, strong induction can
be used

e The numbering of the propositions doesn’ t need to
start at O

e The number of base cases depends on the problem
at hand

e Enough are needed to guarantee that the smallest non—
base case can be proven using only the base cases

Bubble Sort

e First Pass: Third Pass:
« (51329)—>(15329) e (12359)->(12359)
e (15329)—>(13529) e (12359)->(12359)
* (13529)->(13259) e Fourth Pass:
* (13259)->(13259) e« (12359)->(12359)

e Second Pass:
e (13259)—>(13259)
e (13259)(12359)
« (12359)—>(12359)

http://www.youtube.com/watch?v=lyZQPjUT5B4
http://www.visualgo.net/sorting

http://www.youtube.com/watch?v=lyZQPjUT5B4
http://www.visualgo.net/sorting

Sorting Intro: Bubble Sort

Simple sorting algorithm that works by repeatedly
stepping through the list to be sorted, comparing
two items at a time and swapping them if they are in
the wrong order

Repeated until no swaps are needed

Gets its name from the way larger elements "bubble
to the end of the list

Time complexity!?

e O(n?) : Might perform O(n?) compares and O(n?) swaps
Space complexity!?

e O(n) total (very little additional space is required)

O O O O O O U1 Un

Sorting Intro: Insertion Sort

— NN W W U1 N
w w h 01 4 OO
A DA U W W W
OUrn n N M M D DN
O NN DNDMNMDNDDN

I
I
I
I
I
I
I
.

o NN O O OM O O OO

2 3 4 5

http://www.visualgo.net/sorting

http://www.visualgo.net/sorting

Sorting Intro : Insertion Sort

Simple sorting algorithm that works by building a
sorted list one entry at a time

Less efficient on large lists than more advanced
algorithms

Advantages:

e Simple to implement and efficient on small lists
 Efficient on data sets which are already mostly sorted

Time complexity : Worst Case

e O(n?) : Could perform O(n?%) compares and O(n?) moves

Space complexity
* O(n)

Sorting Intro : Selection Sort

http://www.visualgo.net/sorting
(demo is “min” version)

3 27 5 |6
3 16 5 27
3 5 6 27
5 3 1l 6 27
3 5 1l 6 27

Time Complexity:

e O(n?) : Might perform O(n2) compares; only O(n) swaps
Space Complexity:

* O(n)

http://www.visualgo.net/sorting

Sorting Intro : Selection Sort

e Similar to insertion sort

* Noted for its simplicity and performance advantages
when compared to complicated algorithms

e The algorithm works as follows:
* Find the maximum value in the list
e Swap it with the value in the last position

* Repeat the steps above for remainder of the list (ending at
the second to last position)

Some Skill Testing!

Selection sort uses two utility methods

Uses a swap method

private static void swap(int[]A, int i, int Jj) {
int temp = a[i];
A[i] = A[]];
A[J] = temp;

}

And a max-finding method
// Find position of largest value in A[0 .. last]
public static int findPosOfMax(int[] A, int last) {
int maxPos = 0; // A wild guess
for(int 1 = 1; 1 <= last; 1i++)
if (A[maxPos] < A[i]) maxPos= 1i;

return maxPos;

Some Skill Testing!

An lterative Selection Sort
public static void selectionSort(int[] A) {
for(int i = A.length - 1; 1i>0; i--)
int big= findPosOfMax(A,1);
swap(A, 1, big);

}

A Recursive Selection Sort (just the helper method)
public static void recSSHelper(int[] A, int last) {
if(last == 0) return; // base case

int big= findPosOfMax(A, last);
swap(A,big, last);
recSSHelper (A, last-1);

20

Some Skill Testing!

* Prove: recSSHelper (A, last) sorts elements
A[0]...A[last].
e Assume that maxLocation(A, last) is correct

* Proof:

e Base case: last = 0.

* Induction Hypothesis:
* For k<last, recSSHelper sorts A[0]...A[k].

* Prove for last:
* Note: Using Second Principle of Induction (Strong)

21

Some Skill Testing!

After call to findPosOfMax(A, last):
e ‘big’ is location of largest A[0..last]

That value is swapped with Allast]:

e Rest of elements are A[0]..Allast—1].

Since last — 1< last, then by induction

e recSSHelper(A, last—1) sorts A[0]..A[last—1].
Thus A[0]..Allast—1] are in increasing order
e and Allast—1] < Allast].

So, A[0]---Allast] are sorted.

22

Making Sorting Generic

We need comparable items

Unlike with equallty testing, the Object class
doesn’t define a “compare()” method &

We want a uniform way of saying objects can
be compared, so we can write generic
versions of methods like binary search

Use an interface!

Two approaches
e Comparable interface
e Comparator interface

Java Interfaces : Motivating Example

ldea: Implement a class that describes a single
playing card (e.g., “Queen of Diamonds™)

Start simple: a single class — BasicCard
Think about alternative implementations

Use an interface to allow implementation
independent coding

Let’s look at BasicCard

24

Aside : Enum Types are Class Types

enum Rank { TWO, THREE, FOUR, FIVE, SIX, SEVEN,
EIGHT, NINE, TEN, JACK, QUEEN, KING, ACE;

}
Notes

* Creates an ordered sequence of named constants

e Can find position of an enum value in sequence
e int i = r.ordinal(); // r is of type Rank

e Can get an array of all values in the enum
e Rank[] allRanks = Rank.values();

e Can use in for loops
e for (Rank r : Rank.values()) { ... }

e Can have its own instance variables and methods ..

Implementing a Card Object

Think before we code!

Many ways to implement a card
e An index from 0 to 51; a rank and a suit, ...

Start general.

* Build an interface that advertises all public features

of a card

* Not an implementation (define methods, but don’t

include code)

Then get specific.

e Build specific implementation of a card using our
general card interface

26

Start General: Card: An Interface

* What data do we have to represent!?
* Properties of cards

* How can we represent these properties!?

e There are often multiple options—name some!
* What methods do we need?
e Capabilities of cards

e Do we need accessor and/or mutator methods!?

27

A Card Interface

public interface Card {

// Methods - must be public
public Suit getSuit();
public Rank getRank();

}
Notes

* Don’t allow card to change its value

* Only need accessor methods

e Support enums for rank and suit

28

Get Specific: Card Implementations

* Now suppose we want to build a specific card
object

* We want to use the properties/capabilities
defined in our interface

e That is, we want to implement the interface

public class CardRankSuit implements Card {

}

29

The Enums for Cards

public enum Suit {
CLUBS, DIAMONDS, HEARTS, SPADES; // the values

public String toString() {
switch (this) {
case CLUBS : return "clubs";
case DIAMONDS : return "diamonds";
case HEARTS : return "hearts";
case SPADES : return "spades';

}

return "Bad suit!";

}

A similar declaration is defined for Rank 0

A First Card Implementation

public class CardRankSuit implements Card {
// instance variables

protected Suit suit;

protected Rank rank;
// Constructors

public CardRankSuit(Rank r, Suit s)

{suit = s; rank = r;}

// returns suit of card

public Suit getSuit() { return suit;}
// returns rank of card

public Rank getRank() { return rank;}
// create String representation of card
public String toString()

{return getRank() + " of " + getSuit();}

} 31

A Second Card Implementation

public class Card52 implements Card {
// instance variables
protected int code; // 0 <= code < 52;
// rank is code % 13 and suit is code / 13
// Constructors
public CardRankSuit(int index)

{code = index;}
// returns suit of card

public Suit getSuit() {// see sample code}
// returns rank of card

public Rank getRank() {// see sample code}
// create String representation of card
public String toString()

{return getRank() + " of " + getSuit();} Y

}

Improvements to Card>2

Add back a constructor with Rank/Suit parameters

public class Card52v2 implements Card {

public Card52v2(Rank theRank, Suit theSuit) {

code = theSuit.ordinal() * 13 + theRank.ordinal();

}

Replace switch statements in “get” methods...

public Suit getSuit() {

return Suit.value(code / 13);}
public Rank getRank() {

return Rank.value(code % 13);}

...by adding value() method to each enum
public static Rank value(int ordval) {
return vals[ordVval];}

33

Interfaces: VWorth Noting

Interface methods are always public

* Java does not allow non-public methods in interfaces

Interface instance variables are always static final
e static variables are shared across instances

e final variables are constants: they can’t change value

Most classes contain constructors; interfaces do not!

Can declare interface objects (just like class objects)
but cannot instantiate (“new”) them
Typically there is no executable code in an Interface

e Although it is possible to include code in certain situations
34

Searching & Sorting
The Comparable Interface

e Java provides an interface for comparisons between objects

* Provides a replacement for “<* and “>" in recBinarySearch

* Java provides the Comparable interface, which specifies a
method compareTo()

* Any class that implements Comparable must provide compareTo()

public interface Comparable<T> ({

//post: return < 0 if this smaller than other
return 0 if this equal to other
return > 0 if this greater than other

int compareTo(T other);

Comparable Interface

* Many Java-provided classes implement Comparable
e String (alphabetical order)
* Wrapper classes: Integer, Character, Boolean

o All Enum classes

* We can write methods that work on any type that
implements Comparable
* Let’s See some examples

* RecBinSearch.java

e BinSearchComparable.java

compareTo in Card Example

We could write

public class CardRankSuit implements
Comparable<CardRankSuit> {

public int compareTo(CardRankSuit other) {

if (this.getSuit() != other.getSuit())

return getSuit().compareTo(other.Suit());
else

return getRank().compareTo(other.getRank());

}

// rest of code for the class....

}

compareTo in Card Example

We actually wrote (in Card.java)

public interface Card extends Comparable<Card> {
public int compareTo(Card other);
// remainder of interface code

Comparable & compareTo

The Comparable interface (Comparable<T>) is part of the
java.lang (not structure5) package.

Other Java-provided structures can take advantage of objects
that implement Comparable

e See the Arrays class in java.util

e Example JavaArraysBinSearch

Users of Comparable are urged to ensure that compareTo()
and equals() are consistent. That is,

e x.compareTo(y) == 0 exactly when x.equals(y) == true

Note that Comparable limits user to a single ordering
The syntax can get kind of dense

e See BinSearchComparable.java : a generic binary search method
* And even more cumbersome....

ComparableAssociation

e Suppose we want an ordered Dictionary, so that we can use binary
search instead of linear

e Structure5 provides a ComparableAssociation class that
implements Comparable.

e The class declaration for ComparableAssociation is
...wait for it...
public class ComparableAssociation<K extends Comparable<K>, V>
Extends Association<K,V> implements
Comparable<ComparableAssociation<K,V>>
(Yikes!)
e Example: Since Integer implements Comparable, we can write

e ComparableAssociation<Integer, String> myAssoc =
new ComparableAssociation(new Integer(567), “Bob”);

* We could then use Arrays.sort on an array of these

