
CSCI 136
Data Structures &

Advanced Programming

Lecture 9
Fall 2019

Instructors: B&S

Administrative Details

• Remember: First Problem Set is online
• Due at beginning of class on Friday

• Lab 3 Today!
• You may work with a partner

• Come to lab with a plan!
• Answer questions before lab

• Lab 1 has been returned….

Last Time

• Mathematical Induction
• For algorithm run-time and correctness

• More About Recursion
• Recursion on arrays; helper methods

3

Today’s Outline

• Final Tips on Induction
• Basic Sorting
• Bubble, Insertion, Selection Sorts
• Including proofs of correctness

• The Comparable Interface
• An Extended Example: A Playing Card Type
• Making Search Generic

4

Notes on Induction

• Whenver induction is needed, strong induction can
be used

• The numbering of the propositions doesn’t need to
start at 0

• The number of base cases depends on the problem
at hand

• Enough are needed to guarantee that the smallest non-
base case can be proven using only the base cases

Bubble Sort

• First Pass:
• (5 1 3 2 9) ® (1 5 3 2 9)

• (1 5 3 2 9) ® (1 3 5 2 9)
• (1 3 5 2 9) ® (1 3 2 5 9)

• (1 3 2 5 9) ® (1 3 2 5 9)

• Second Pass:
• (1 3 2 5 9) ® (1 3 2 5 9)
• (1 3 2 5 9) ® (1 2 3 5 9)

• (1 2 3 5 9) ® (1 2 3 5 9)

• Third Pass:
• (1 2 3 5 9) -> (1 2 3 5 9)

• (1 2 3 5 9) -> (1 2 3 5 9)

• Fourth Pass:
• (1 2 3 5 9) -> (1 2 3 5 9)

http://www.youtube.com/watch?v=lyZQPjUT5B4
http://www.visualgo.net/sorting

http://www.youtube.com/watch?v=lyZQPjUT5B4
http://www.visualgo.net/sorting

Sorting Intro: Bubble Sort
• Simple sorting algorithm that works by repeatedly

stepping through the list to be sorted, comparing
two items at a time and swapping them if they are in
the wrong order

• Repeated until no swaps are needed
• Gets its name from the way larger elements "bubble"

to the end of the list
• Time complexity?

• O(n2) : Might perform O(n2) compares and O(n2) swaps

• Space complexity?
• O(n) total (very little additional space is required)

Sorting Intro: Insertion Sort

• 5 7 0 3 4 2 6 1
• 5 7 0 3 4 2 6 1
• 0 5 7 3 4 2 6 1
• 0 3 5 7 4 2 6 1
• 0 3 4 5 7 2 6 1
• 0 2 3 4 5 7 6 1
• 0 2 3 4 5 6 7 1
• 0 1 2 3 4 5 6 7

http://www.visualgo.net/sorting

http://www.visualgo.net/sorting

Sorting Intro : Insertion Sort
• Simple sorting algorithm that works by building a

sorted list one entry at a time
• Less efficient on large lists than more advanced

algorithms
• Advantages:

• Simple to implement and efficient on small lists
• Efficient on data sets which are already mostly sorted

• Time complexity : Worst Case
• O(n2) : Could perform O(n2) compares and O(n2) moves

• Space complexity
• O(n)

Sorting Intro : Selection Sort

• 11 3 27 5 16
• 11 3 16 5 27
• 11 3 5 16 27
• 5 3 11 16 27
• 3 5 11 16 27

• Time Complexity:
• O(n2) : Might perform O(n2) compares; only O(n) swaps

• Space Complexity:
• O(n)

http://www.visualgo.net/sorting
(demo is “min” version)

http://www.visualgo.net/sorting

Sorting Intro : Selection Sort

• Similar to insertion sort
• Noted for its simplicity and performance advantages

when compared to complicated algorithms
• The algorithm works as follows:

• Find the maximum value in the list
• Swap it with the value in the last position

• Repeat the steps above for remainder of the list (ending at
the second to last position)

Some Skill Testing!

19

Selection sort uses two utility methods

Uses a swap method
private static void swap(int[]A, int i, int j) {

int temp = a[i];
A[i] = A[j];
A[j] = temp;

}

And a max-finding method
// Find position of largest value in A[0 .. last]
public static int findPosOfMax(int[] A, int last) {

int maxPos = 0; // A wild guess
for(int i = 1; i <= last; i++)

if (A[maxPos] < A[i]) maxPos= i;
return maxPos;

}

Some Skill Testing!

20

An Iterative Selection Sort
public static void selectionSort(int[] A) {

for(int i = A.length - 1; i>0; i--)
int big= findPosOfMax(A,i);
swap(A, i, big);

}
}

A Recursive Selection Sort (just the helper method)
public static void recSSHelper(int[] A, int last) {

if(last == 0) return; // base case

int big= findPosOfMax(A, last);
swap(A,big,last);
recSSHelper(A, last-1);

}

Some Skill Testing!

• Prove: recSSHelper (A, last) sorts elements
A[0]…A[last].
• Assume that maxLocation(A, last) is correct

• Proof:
• Base case: last = 0.
• Induction Hypothesis:

• For k<last, recSSHelper sorts A[0]…A[k].

• Prove for last:
• Note: Using Second Principle of Induction (Strong)

21

Some Skill Testing!

• After call to findPosOfMax(A, last):
• ‘big’ is location of largest A[0..last]

• That value is swapped with A[last]:
• Rest of elements are A[0]..A[last-1].

• Since last - 1< last, then by induction
• recSSHelper(A, last-1) sorts A[0]..A[last-1].

• Thus A[0]..A[last-1] are in increasing order
• and A[last-1] ≤ A[last].

• So, A[0]…A[last] are sorted.
22

Making Sorting Generic

• We need comparable items
• Unlike with equality testing, the Object class

doesn’t define a “compare()” method 😟
• We want a uniform way of saying objects can

be compared, so we can write generic
versions of methods like binary search

• Use an interface!
• Two approaches
• Comparable interface
• Comparator interface

Java Interfaces : Motivating Example

• Idea: Implement a class that describes a single
playing card (e.g., “Queen of Diamonds”)

• Start simple: a single class – BasicCard
• Think about alternative implementations
• Use an interface to allow implementation

independent coding
• Let’s look at BasicCard

24

Aside : Enum Types are Class Types
enum Rank { TWO, THREE, FOUR, FIVE, SIX, SEVEN,

EIGHT, NINE, TEN, JACK, QUEEN, KING, ACE;
}

Notes

• Creates an ordered sequence of named constants
• Can find position of an enum value in sequence

• int i = r.ordinal(); // r is of type Rank

• Can get an array of all values in the enum
• Rank[] allRanks = Rank.values();

• Can use in for loops
• for (Rank r : Rank.values()) { ... }

• Can have its own instance variables and methods 25

26

Implementing a Card Object

• Think before we code!
• Many ways to implement a card
• An index from 0 to 51; a rank and a suit, ...

• Start general.
• Build an interface that advertises all public features

of a card
• Not an implementation (define methods, but don’t

include code)

• Then get specific.
• Build specific implementation of a card using our

general card interface

27

Start General: Card: An Interface

• What data do we have to represent?
• Properties of cards
• How can we represent these properties?

• There are often multiple options—name some!

• What methods do we need?
• Capabilities of cards

• Do we need accessor and/or mutator methods?

*

A Card Interface
public interface Card {

// Methods - must be public
public Suit getSuit();
public Rank getRank();

}

Notes

• Don’t allow card to change its value
• Only need accessor methods

• Support enums for rank and suit

28

29

Get Specific: Card Implementations

• Now suppose we want to build a specific card
object

• We want to use the properties/capabilities
defined in our interface
• That is, we want to implement the interface

public class CardRankSuit implements Card {
. . .

}

The Enums for Cards
public enum Suit {

CLUBS, DIAMONDS, HEARTS, SPADES; // the values

public String toString() {
switch (this) {
case CLUBS : return "clubs";
case DIAMONDS : return "diamonds";
case HEARTS : return "hearts";
case SPADES : return "spades";
}
return "Bad suit!";

}
}

A similar declaration is defined for Rank 30

A First Card Implementation
public class CardRankSuit implements Card {
// instance variables

protected Suit suit;
protected Rank rank;

// Constructors
public CardRankSuit(Rank r, Suit s)

{suit = s; rank = r;}
// returns suit of card

public Suit getSuit() { return suit;}
// returns rank of card

public Rank getRank() { return rank;}
// create String representation of card
public String toString()

{return getRank() + " of " + getSuit();}
}

31

A Second Card Implementation
public class Card52 implements Card {
// instance variables
protected int code; // 0 <= code < 52;
// rank is code % 13 and suit is code / 13
// Constructors
public CardRankSuit(int index)

{code = index;}
// returns suit of card

public Suit getSuit() {// see sample code}
// returns rank of card

public Rank getRank() {// see sample code}
// create String representation of card
public String toString()

{return getRank() + " of " + getSuit();}
}

32

Improvements to Card52
Add back a constructor with Rank/Suit parameters
public class Card52v2 implements Card {
...
public Card52v2(Rank theRank, Suit theSuit) {
code = theSuit.ordinal() * 13 + theRank.ordinal();

}

Replace switch statements in “get” methods...
public Suit getSuit() {

return Suit.value(code / 13);}
public Rank getRank() {

return Rank.value(code % 13);}

...by adding value() method to each enum
public static Rank value(int ordVal) {

return vals[ordVal];} 33

Interfaces: Worth Noting

• Interface methods are always public
• Java does not allow non-public methods in interfaces

• Interface instance variables are always static final
• static variables are shared across instances

• final variables are constants: they can’t change value

• Most classes contain constructors; interfaces do not!
• Can declare interface objects (just like class objects)

but cannot instantiate (“new”) them
• Typically there is no executable code in an Interface

• Although it is possible to include code in certain situations
34

Searching & Sorting
The Comparable Interface

• Java provides an interface for comparisons between objects
• Provides a replacement for “<“ and “>” in recBinarySearch

• Java provides the Comparable interface, which specifies a
method compareTo()
• Any class that implements Comparable must provide compareTo()

public interface Comparable<T> {
//post: return < 0 if this smaller than other

return 0 if this equal to other
return > 0 if this greater than other

int compareTo(T other);
}

Comparable Interface

• Many Java-provided classes implement Comparable
• String (alphabetical order)

• Wrapper classes: Integer, Character, Boolean

• All Enum classes

• We can write methods that work on any type that
implements Comparable
• Let’s See some examples

• RecBinSearch.java

• BinSearchComparable.java

compareTo in Card Example

We could write

public class CardRankSuit implements
Comparable<CardRankSuit> {

public int compareTo(CardRankSuit other) {
if (this.getSuit() != other.getSuit())

return getSuit().compareTo(other.Suit());
else

return getRank().compareTo(other.getRank());
}

// rest of code for the class....
}

compareTo in Card Example

We actually wrote (in Card.java)

public interface Card extends Comparable<Card> {
public int compareTo(Card other);
// remainder of interface code

}

Comparable & compareTo

• The Comparable interface (Comparable<T>) is part of the
java.lang (not structure5) package.

• Other Java-provided structures can take advantage of objects
that implement Comparable
• See the Arrays class in java.util
• Example JavaArraysBinSearch

• Users of Comparable are urged to ensure that compareTo()
and equals() are consistent. That is,
• x.compareTo(y) == 0 exactly when x.equals(y) == true

• Note that Comparable limits user to a single ordering
• The syntax can get kind of dense

• See BinSearchComparable.java : a generic binary search method
• And even more cumbersome….

ComparableAssociation
• Suppose we want an ordered Dictionary, so that we can use binary

search instead of linear
• Structure5 provides a ComparableAssociation class that

implements Comparable.
• The class declaration for ComparableAssociation is

…wait for it...
public class ComparableAssociation<K extends Comparable<K>, V>

Extends Association<K,V> implements
Comparable<ComparableAssociation<K,V>>

(Yikes!)
• Example: Since Integer implements Comparable, we can write

• ComparableAssociation<Integer, String> myAssoc =
new ComparableAssociation(new Integer(567), “Bob”);

• We could then use Arrays.sort on an array of these

