CSCI 136
 Data Structures \& Advanced Programming

Lecture 8
Fall 2019
Instructors: Bill \& Sam

Administrative Details

- Remember: First Problem Set is online
- Due at beginning of class on Friday
- Lab 3
- You may work with a partner
- Fill out the Google Form by 4 pm today (check email!)
- Come to lab with a plan!
- Answer questions before lab
- Released later today
- Lab I grades later today

Last Time

- Measuring Computational Complexity

Today

- More Recursion
- Mathematical Induction (Weak)

Vector Operations : Worst-Case

For $\mathrm{n}=$ Vector size (not capacity!):

- $O(1)$: size(), capacity(), isEmpty(), get(i), set(i), firstElement(), lastElement()
- $O(n)$: indexOf(), contains(), remove(elt), remove(i)
- What about add methods?
- If Vector doesn't need to grow
- add(elt) is $O(1)$ but add(elt, i$)$ is $O(n)$
- Otherwise, depends on ensureCapacity() time
- Time to compute newLength : $O(\log n)$
- Time to copy array: $O(n)$
- $O(\log n)+O(n)$ is $O(n)$

Vector: Add Method Complexity

Suppose we grow the Vector's array by a fixed amount d. How long does it take to add n items to an empty
Vector?

- The array will be copied each time its capacity needs to exceed a multiple of d
- At sizes 0, d, 2d, ..., n
- Copying an array of size kd takes ckd steps for some constant c , giving a total of

$$
\sum_{k=1}^{n / d} c \cdot k \cdot d=c \cdot d \sum_{k=1}^{n / d} k=c \cdot d \cdot \frac{(n / d)(n / d+1)}{2}=O\left(n^{2}\right)
$$

Vector: Add Method Complexity

Suppose we want to grow the Vector's array by doubling. How long does it take to add n items to an empty Vector?

- The array will be copied each time it's capacity needs to exceed a power of 2.
- At sizes $0,1,2,4,8, \ldots, 2^{\left\lfloor\log _{2} n\right\rfloor}$
- Copying an array of size 2^{k} takes $c 2^{k}$ steps for some constant c, giving a total of:

$$
\sum_{k=1}^{\log _{2} n} c \cdot 2^{k}=c \sum_{k=1}^{\log _{2} n} 2^{k}=c \cdot\left(2^{1+\log _{2} n}-1\right)=O(n)
$$

Common Complexities

For $\mathrm{n}=$ measure of problem size:

- $O(1)$: constant time and space
- $O(\log n)$: divide and conquer algorithms, binary search
- $O(n)$: linear dependence, simple list lookup
- $O(n \log n)$: divide and conquer sorting algorithms
- $O\left(n^{2}\right)$: matrix addition, selection sort
- $O\left(n^{3}\right)$: matrix multiplication
- $O\left(n^{12}\right)$: Original AKS primality test for n-bit integers
- $O\left(2^{n}\right)$: subset sum, graph 3-coloring, satisfiability, ...
- $O(n!)$: traveling salesman problem (in fact $O\left(n^{2} 2^{n}\right)$)

Recursion

- General problem solving strategy
- Break problem into smaller pieces (sub-problems)
- Sub-problems are typically smaller versions of same problem

Recursion

- Many algorithms are recursive
- Can be easier to understand, prove correctness, or determine efficiency
- Today we will review recursion and then talk about techniques for reasoning about recursive algorithms

Factorial

- $n!=n(n-1)(n-2)(n-3) \ldots(3)(2)(1)$
- How can we implement this?
- We could use a for loop...

$$
\begin{aligned}
& \text { int product }=1 ; \\
& \text { for(int } i=1 ; i<=n ; i++) \\
& \quad \text { product } *=i ;
\end{aligned}
$$

- But we could also write it recursively....

Factorial

- $n!=n(n-1)(n-2)(n-3) \ldots(3)(2)(1)$
- Recursive definition (what "..." really means!)
- $n!=n *(n-1)$!
- $0!=1$
// Pre: n >= 0
public static int fact(int n) \{
if ($\mathrm{n}==0$) return 1 ;
else return $n * f a c t(n-1) ;$
\}

Factorial

Factorial

- In recursion, we always use the same basic approach
- What's our base case? [Sometimes "cases"]
- $n=0$; fact $(0)=1$
- What's the recursive relationship?
- $n>0 ;$ fact $(n)=n * \operatorname{fact}(n-1)$

Fibonacci Numbers

- $1,1,2,3,5,8,13$
- Definition
- $F_{0}=1, F_{1}=1$
- For $n>1, F_{n}=F_{n-1}+F_{n-2}$
- Inherently recursive!
- It appears almost everywhere
- Growth: Populations, plant features
- Architecture
- Data Structures!

fib.java

```
public class fib{
    // pre: n is non-negative
        public static int fib(int n) {
        if (n==0 || n == 1) {
            return 1;
        }
        else {
            return fib(n - 1) + fib(n - 2);
        }
    }
    public static void main(String args[]) {
        System.out.println(fib(Integer.valueOf(args[0]).intValue()));
    }
}
```

Demo: RecursiveMethods.java....
Question: Why is fib so slow?!

Towers of Hanoi

- Demo
- Base case:
- One disk: Move from start to finish
- Recursive case (n disks):
- Move smallest $n-1$ disks from start to temp
- Move bottom disk from start to finish
- Move smallest $n-1$ disks from temp to finish
- Let's try to write it....

Recursion Tradeoffs

- Advantages
- Often easier to construct recursive solution
- Code is usually cleaner
- Some problems do not have obvious nonrecursive solutions
- Disadvantages
- Overhead of recursive calls
- Can use lots of memory (need to store state for each recursive call until base case is reached)
- E.g. recursive fibonacci method

Alternate contains() for Vector

```
// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {
    if (from > to)
        return false; // Base case: empty range
    else
        return elt.equals(elementData[from]) ||
                        contains(elt, from+1, to);
}
public boolean contains(E elt) {
    return contains(elt, 0, size()-1); }
```

- What's the time complexity of contains?
- O (to - from $+I)=O(n)(n$ is the portion of the array searched $)$
- Why?
- Bootstrapping argument! True for: to - from $=0$, to - from $=1, \ldots$
- Let's formalize this bootstrapping idea....

Mathematical Induction

- The mathematical cousin of recursion is induction
- Induction is a proof technique
- Reflects the structure of the natural numbers
- Use to simultaneously prove an infinite number of theorems!

Mathematical Induction

- Example: Prove that for every $\mathrm{n} \geq 0$

$$
P_{n}: \sum_{i=0}^{n} i=0+1+\ldots+n=\frac{n(n+1)}{2}
$$

- Proof by induction:
- Base case: P_{n} is true for $n=0$ (just check it!)
- Induction step: If P_{n} is true for some $n \geq 0$, then P_{n+1} is true.
$P_{n+1}: 0+1+\ldots+n+(n+1)=\frac{(n+1)((n+1)+1)}{2}=\frac{(n+1)(n+2)}{2}$
Check: $0+1+\ldots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}$
- First equality holds by assumed truth of P_{n} !

Mathematical Induction

Principle of Mathematical Induction (Weak)
Let $\mathrm{P}(0), \mathrm{P}(\mathrm{I}), \mathrm{P}(2), \ldots$ Be a sequence of statements, each of which could be either true or false. Suppose that
I. $P(0)$ is true, and
2. For all $n \geq 0$, if $P(n)$ is true, then so is $P(n+1)$.

Then all of the statements are true!

Note: Often Property 2 is stated as
2. For all $n>0$, if $P(n-I)$ is true, then so is $P(n)$. Apology: I do this a lot, as you'll see on future slides!

Mathematical Induction

- Prove: $\sum_{i=0}^{n} 2^{i}=2^{0}+2^{1}+2^{2}+\ldots+2^{n}=2^{n+1}-1$
- Prove: $0^{3}+1^{3}+\ldots+n^{3}=(0+1+\ldots+n)^{2}$

Proof: $0^{3}+1^{3}+\ldots+n^{3}=(0+1+\ldots+n)^{2}$ Note: I'm doing the $\mathrm{n}-1 \rightarrow \mathrm{n}$ version

$$
\begin{aligned}
\left(0^{3}+1^{3}+\ldots n^{3}\right) & =\left(0^{3}+1^{3}+\ldots+(n-1)^{3}\right)+n^{3} \\
\text { Induction } & =(0+1+\ldots+(n-1))^{2}+n^{3} \\
& =\left(\frac{n(n-1)}{2}\right)^{2}+n^{3} \\
& =n^{2}\left(\frac{(n-1)^{2}+4 n}{4}\right) \\
& =n^{2}\left(\frac{n^{2}+2 n+1}{4}\right) \\
& =n^{2}\left(\frac{(n+1)^{2}}{4}\right) \\
& =\left(\frac{n(n+1)}{2}\right)^{2} \\
& =(0+1+\ldots+n)^{2}
\end{aligned}
$$

What about Recursion?

- What does induction have to do with recursion?
- Same form!
- Base case
- Inductive case that uses simpler form of problem
- Example: factorial
- Prove that fact(n) requires n multiplications
- Base case: $\mathrm{n}=0$ returns $\mathrm{I}, 0$ multiplications
- Assume true for all $k<n$, so fact (k) requires k multiplications.
- fact(n) performs one multiplication ($n^{*} f a c t(n-I)$). We know that fact($n-I$) requires n-I multiplications. $I+n-I=n$, therefore fact(n) requires n multiplications.

Counting Method Calls

- Example: Fibonacci
- Prove that fib(n) makes at least fib(n) calls to fib()
- Base cases: $\mathrm{n}=0$: I call; $\mathrm{n}=\mathrm{I}$; I call
- Assume that for some $n \geq 2$, fib(n-I) makes at least fib($n-I$) calls to fib() and $\mathrm{fib}(\mathrm{n}-2)$ makes at least fib(n-2) calls to fib().
- Claim: Then fib(n) makes at least fib(n) calls to fib()
- I initial call: fib(n)
- By induction: At least fib(n-I) calls for fib(n-I)
- And as least fib(n-2) calls for fib(n-2)
- Total: $1+\mathrm{fib}(n-1)+\mathrm{fib}(n-2) \geq \mathrm{fib}(n-1)+\mathrm{fib}(n-2)=\mathrm{fib}(n)$ calls
- Note: Need two base cases!
- One can show by induction that for $\mathrm{n}>10$: fib(n) $>(\mathrm{I} .5)^{\mathrm{n}}$
- Thus the number of calls grows exponentially!
- We can visualize this with a method call graph....

Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)
Let $P_{0}, P_{1}, P_{2}, \ldots$ Be a sequence of statements, each of which could be either true or false. Suppose that
I. P_{0} and P_{1} are true, and
2. For all $n \geq 2$, if P_{n-1} and P_{n-2} are true, then so is P_{n}.

Then all of the statements are true!
Other versions:

- Can have $\mathrm{k}>2$ base cases
- Doesn't need to start at 0

Example: Binary Search

- Given an array $a[]$ of positive integers in increasing order, and an integer x, find location of x in $a[]$.
- Take "indexOf" approach: return -1 if x is not in a[]
protected static int recBinarySearch(int a[], int value, int low, int high) \{

```
if (low > high) return -1;
```

else \{
int mid $=$ (low + high) / 2; //find midpoint
if (a[mid] == value) return mid; //first comparison
//second comparison
else if (a[mid] < value) //search upper half
return recBinarySearch(a, value, mid + 1, high);
else //search lower half
return recBinarySearch(a, value, low, mid - 1);
\}

Binary Search takes $O(\log n)$ Time

Can we use induction to prove this?

- Claim: If $\mathrm{n}=$ high - low +1 , then recBinSearch performs at most c $(1+\log n)$ operations, where c is twice the number of statements in recBinSearch
- Base case: $\mathrm{n}=\mathrm{I}$: Then low = high so only c statements execute (method runs twice) and $c \leq$ $c(1+\log 1)$
- Assume that claim holds for some $n \geq 1$, does it hold for $n+1$? [Note: $n+1>1$, so low $<$ high]
- Problem: Recursive call is not on n---it's on $n / 2$.
- Solution: We need a better version of the PMI....

Mathematical Induction

Principle of Mathematical Induction (Strong)
Let $\mathrm{P}(0), \mathrm{P}(\mathrm{I}), \mathrm{P}(2), \ldots$ Be a sequence of statements, each of which could be either true or false. Suppose that, for some $k \geq 0$
I. $P(0), P(I), \ldots, P(k)$ are true, and
2. For every $n \geq k$, if $\mathrm{P}(\mathrm{I}), \mathrm{P}(2), \ldots, \mathrm{P}(\mathrm{n})$ are true, then so is $P(n+1)$.
Then all of the statements are true!

Binary Search takes $O(\log n)$ Time

Try again now:

- Assume that for some $n \geq 1$, the claim holds for all $k \leq n$, does claim hold for $\mathrm{n}+\mathrm{I}$?
- Yes! Either
- $\mathrm{x}=\mathrm{a}$ [mid], so a constant number of operations are performed, or
- RecBinSearch is called on a sub-array of size at most $\mathrm{n} / 2$, and by induction, at most $\mathrm{c}(\mathrm{I}+\log (\mathrm{n} / 2))$ operations are performed.
- This gives a total of at most $\mathrm{c}+\mathrm{c}(1+\log (\mathrm{n} / 2))=\mathrm{c}+\mathrm{c}(\log (2)+$ $\log (n / 2))=c+c(\log n)=c(1+\log n)$ statements

Longest Increasing Subsequence

- Given an array a[] of positive integers, find the length of the largest subsequence of (not necessary consecutive) elements such that for any pair a[i], a[j] in the subsequence, if $i<j$, then $a[i]<a[j]$.
- Example 10712351189115 has 358915 as its longest increasing subsequence (LIS), so the length is 5 .
- How could we find the LIS length of a[]?
- How could we prove our method was correct?
- Let's think....

Longest Increasing Subsequence

- We'll assume all numbers are positive
- (Brilliant) Observation: A LIS for a[I ... n] either contains a[I] ... or it doesn't.
- Therefore, a LIS for a[I ... n] either
- Doesn't contain a[I] and is just a LIS for a[2 ... n]
- Does contain a[I], along with an LIS for a[2 ... n] such that every element in the LIS is > a[I], or
- So the LIS length is either
- Or the LIS length for a[2..n]
- I + LIS length for a[2..n] where every element in LIS is >a[I]
- So the problem to solve is: find the LISL for a[] given that every element in LIS is at least some threshold value

Longest Increasing Subsequence

// Pre: curr < arr.length
// Post: returns length of LIS of arr[curr...] having all > threshold public static int lislHelper(int[] arr, int curr, int threshold) \{ if(curr == arr.length -I)
if (return arr[curr] > threshold) return I;
else return 0 ;
else

$$
\begin{aligned}
& \text { int usingFirst = 0; } \\
& \text { if(arr[curr] > threshold) } \\
& \quad \text { usingFirst = I + lislHelper(arr, curr+I, arr[curr]); } \\
& \text { int notUsingFirst = lislHelper(arr, curr+I, threshold); } \\
& \text { return Math.max(usingFirst, notUsingFirst); }
\end{aligned}
$$

Bubble Sort

- First Pass:
- (5 І 329) $\rightarrow\left(\begin{array}{l}1 \\ 5 \\ 329\end{array}\right)$
- ($15 \underline{3} 29$) $\rightarrow\left(\begin{array}{l}1 \\ 3\end{array} 529\right)$
- ($135 \underline{2} 9) \rightarrow(13 \underline{2} 59)$
- (1325 9) \rightarrow ($1325 \underline{9}$)
- Third Pass:
- ($1 \underline{2} 359$) -> (I $\underline{2} 359$)
- ($12 \underline{3} 59$) -> ($12 \underline{3} 59$)
- Fourth Pass:
- (I $\underline{2} 359$) -> (I $\underline{2} 359$)
- Second Pass:
- (I $\underline{3} 259) \rightarrow(\mathbb{3} 259)$
- ($13 \underline{2} 59) \rightarrow(1 \underline{2} 359)$
- ($123 \underline{5} 9) \rightarrow(12359)$

Sorting Preview: Insertion Sort

- Simple sorting algorithm that works by building a sorted list one entry at a time
- Less efficient on large lists than more advanced algorithms
- Advantages:
- Simple to implement and efficient on small lists
- Efficient on data sets which are already substantially sorted
- Time complexity
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Space complexity
- O(n)

Sorting Preview: Insertion Sort

- $5 \begin{array}{llllllll}5 & 7 & 0 & 3 & 4 & 2 & 6 & 1\end{array}$							
- 5	7	0	3	4	2	6	
- 0	5	7	3	4	2	6	
- 0	3	5	7	4	2	6	
- 0	3	4	5	7	2	6	
- 0	2	3	4	5	7	6	
- 0	2	3	4	5	6	7	
		2	3	4	5	6	

Sorting Preview: Selection Sort

- Similar to insertion sort
- Performs worse than insertion sort in general
- Noted for its simplicity and performance advantages when compared to complicated algorithms
- The algorithm works as follows:
- Find the maximum value in the list
- Swap it with the value in the last position
- Repeat the steps above for remainder of the list (ending at the second to last position)

Sorting Preview: Selection Sort

- II $3 \quad 27 \quad 5 \quad 16$
- II $3 \quad 16 \quad 5 \quad \underline{27}$
- II $3 \quad 5 \quad 16 \quad 27$
- $5 \quad 3 \quad 11 \quad 16 \quad 27$
- $3 \quad 5 \quad 11 \quad 16 \quad 27$
- Time Complexity:
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Space Complexity:
- O(n)

