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Administrative Details

• Remember: First Problem Set is online
• Due at beginning of class on Friday
• Lab 3
• You may work with a partner

• Fill out the Google Form by 4 pm today (check email!)

• Come to lab with a plan!
• Answer questions before lab

• Released later today

• Lab 1 grades later today



Last Time

• Measuring Computational Complexity



Today

• More Recursion
• Mathematical Induction (Weak)



Vector Operations : Worst-Case
For n = Vector size (not capacity!):
• 𝑂(1): size(), capacity(), isEmpty(), get(i), set(i), 

firstElement(), lastElement()
• 𝑂(𝑛): indexOf(), contains(), remove(elt), remove(i)
• What about add methods?

• If Vector doesn’t need to grow
• add(elt) is 𝑂 1 but add(elt, i) is 𝑂(𝑛)
• Otherwise, depends on ensureCapacity() time
• Time to compute newLength : 𝑂 log 𝑛
• Time to copy array: 𝑂(𝑛)
• 𝑂 log 𝑛 + 𝑂 𝑛 is 𝑂(𝑛)
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Vector: Add Method Complexity
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Suppose we grow the Vector’s array by a fixed amount d.
How long does it take to add n items to an empty 
Vector?
• The array will be copied each time its capacity needs 

to exceed a multiple of d
• At sizes 0, d, 2d, …, n

• Copying an array of size kd takes ckd steps for some 
constant c, giving a total of



Vector: Add Method Complexity
Suppose we want to grow the Vector’s array by doubling. 
How long does it take to add n items to an empty Vector?
• The array will be copied each time it’s capacity needs to 

exceed a power of 2.
• At sizes 0, 1, 2, 4, 8, … , 2 0123 4

• Copying an array of size 25 takes 𝑐25 steps for some 
constant 𝑐, giving a total of:
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Common Complexities
For n = measure of problem size:
• 𝑂(1): constant time and space
• 𝑂(log 𝑛): divide and conquer algorithms, binary search
• 𝑂(𝑛): linear dependence, simple list lookup
• 𝑂(𝑛 log 𝑛) : divide and conquer sorting algorithms
• 𝑂 𝑛8 :matrix addition, selection sort
• 𝑂 𝑛9 : matrix multiplication 
• 𝑂(𝑛:8): Original AKS primality test for n-bit integers
• 𝑂(24): subset sum, graph 3-coloring, satisfiability, ...
• 𝑂(𝑛!): traveling salesman problem (in fact 𝑂(𝑛824))
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Recursion

• General problem solving strategy
• Break problem into smaller pieces (sub-problems)
• Sub-problems are typically smaller versions of 

same problem



Recursion

• Many algorithms are recursive
• Can be easier to understand, prove correctness, 

or determine efficiency

• Today we will review recursion and then talk 
about techniques for reasoning about 
recursive algorithms



Factorial

• 𝑛! = 𝑛 𝑛 − 1 𝑛 − 2 𝑛 − 3 … (3)(2)(1)
• How can we implement this?
• We could use a for loop…

int product = 1;
for(int i = 1;i <= n; i++)

product *= i;

• But we could also write it recursively….



Factorial

• 𝑛! = 𝑛 𝑛 − 1 𝑛 − 2 𝑛 − 3 … (3)(2)(1)
• Recursive definition (what “…” really means!)
• 𝑛! = 𝑛 ∗ 𝑛 − 1 !
• 0! = 1

// Pre: n >= 0
public static int fact(int n) {

if (n==0) return 1;
else return n*fact(n-1);

}



fact(3)

fact(2)

fact(1)

fact(0)

1

1*1=1

2*1 = 2

3*2 = 6

Factorial



Factorial

• In recursion, we always use the same basic 
approach

• What’s our base case? [Sometimes “cases”]
• 𝑛 = 0; fact(0) = 1

• What’s the recursive relationship?
• 𝑛 > 0; fact(𝑛) = 𝑛 * fact(𝑛 − 1)



Fibonacci Numbers

• 1, 1, 2, 3, 5, 8, 13
• Definition
• 𝐹C = 1, 𝐹: = 1
• For 𝑛 > 1, 𝐹4 = 𝐹4D: + 𝐹4D8

• Inherently recursive!

• It appears almost everywhere
• Growth: Populations, plant features
• Architecture

• Data Structures!



fib.java
public class fib{

// pre: n is non-negative
public static int fib(int n) {

if (n==0 || n == 1) {
return 1;

}
else {

return fib(n – 1) + fib(n – 2);
}

}

public static void main(String args[]) {
System.out.println(fib(Integer.valueOf(args[0]).intValue()));

}

}

Demo: RecursiveMethods.java….
Question: Why is fib so slow?!



Towers of Hanoi

• Demo
• Base case:
• One disk: Move from start to finish

• Recursive case (n disks):
• Move smallest 𝑛 − 1 disks from start to temp

• Move bottom disk from start to finish
• Move smallest 𝑛 − 1 disks from temp to finish

• Let’s try to write it....



Recursion Tradeoffs

• Advantages
• Often easier to construct recursive solution
• Code is usually cleaner
• Some problems do not have obvious non-

recursive solutions

• Disadvantages
• Overhead of recursive calls
• Can use lots of memory (need to store state for 

each recursive call until base case is reached)
• E.g. recursive fibonacci method



Alternate contains() for Vector
// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {

if (from > to)
return false; // Base case: empty range

else
return elt.equals(elementData[from]) ||

contains(elt, from+1, to);
}

public boolean contains(E elt) {
return contains(elt, 0, size()-1); }

• What’s the time complexity of contains?
• O(to – from + 1) = O(n) (n is the portion of the array searched)
• Why?

• Bootstrapping argument! True for: to – from = 0, to – from = 1, …

• Let’s formalize this bootstrapping idea....



Mathematical Induction

• The mathematical cousin of recursion is 
induction

• Induction is a proof technique
• Reflects the structure of the natural 

numbers
• Use to simultaneously prove an infinite 

number of theorems!



Mathematical Induction
• Example: Prove that for every n ≥ 0

𝑃4 ∶ ∑HIC4 𝑖 = 0 + 1 + …+ 𝑛 = 
4(4K:)
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• Proof by induction:

• Base case: Pn is true for n = 0 (just check it!)

• Induction step: If Pn is true for some n≥0, then 
Pn+1 is true.

𝑃4K:: 0 + 1 + …+ 𝑛 + 𝑛 + 1 =
𝑛 + 1 𝑛 + 1 + 1

2
=
(𝑛 + 1)(𝑛 + 2)

2
Check: 0 + 1 + …+ 𝑛 + 𝑛 + 1 = 4 4K:

8
+ 𝑛 + 1 = (4K:)(4K8)
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• First equality holds by assumed truth of Pn!



Mathematical Induction

Principle of Mathematical Induction (Weak)
Let P(0), P(1), P(2), ... Be a sequence of statements, 
each of which could be either true or false. Suppose 
that

1. P(0) is true, and
2. For all 𝑛 ≥ 0, if P(n) is true, then so is P(n+1).

Then all of the statements are true!

Note: Often Property 2 is stated as
2. For all n > 0, if P(n-1) is true, then so is P(n).

Apology: I do this a lot, as you’ll see on future slides!



Mathematical Induction

• Prove:

• Prove:  
€ 

2i = 20 + 21 + 22 + ...+ 2n = 2n+1 −1
i= 0

n

∑

€ 

03 +13 + ...+ n3 = (0 +1+ ...+ n)2



Proof:

€ 

03 +13 + ...+ n3 = (0 +1+ ...+ n)2

(03 + 13 + ...n3) = (03 + 13 + ... + (n� 1)3) + n3

= (0 + 1 + ... + (n� 1))2 + n3

=
�

n(n� 1)
2

⇥2

+ n3

= n2

�
(n� 1)2 + 4n

4

⇥

= n2

�
n2 + 2n + 1

4

⇥

= n2

�
(n + 1)2

4

⇥

=
�

n(n + 1)
2

⇥2

= (0 + 1 + ... + n)2 24

Induction☞

Note: I’m doing the n-1 à n version 



What about Recursion?

• What does induction have to do with recursion?
• Same form!

• Base case

• Inductive case that uses simpler form of problem

• Example: factorial
• Prove that fact(n) requires n multiplications

• Base case: n = 0 returns 1, 0 multiplications
• Assume true for all k<n, so fact(k) requires k multiplications.

• fact(n) performs one multiplication (n*fact(n-1)).  We know that 
fact(n-1) requires n-1 multiplications. 1+n-1 = n, therefore fact(n) 
requires n multiplications.



Counting Method Calls

• Example: Fibonacci
• Prove that fib(n) makes at least fib(n) calls to fib()

• Base cases: n = 0: 1 call; n = 1; 1 call

• Assume that for some 𝑛 ≥ 2, fib(n-1) makes at least fib(n-1) calls 
to fib() and fib(n-2) makes at least fib(n-2) calls to fib().

• Claim: Then fib(n) makes at least fib(n) calls to fib()
– 1 initial call: fib(n)
– By induction: At least fib(n-1) calls for fib(n-1)
– And as least fib(n-2) calls for fib(n-2)
– Total: 1 + fib 𝑛 − 1 + fib 𝑛 − 2 ≥ fib 𝑛 − 1 + fib 𝑛 − 2 = fib 𝑛 calls

• Note: Need two base cases!
• One can show by induction that for n > 10: fib(n) > (1.5)n

• Thus the number of calls grows exponentially!
• We can visualize this with a method call graph….



Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)
Let P0, P1, P2, ... Be a sequence of statements, each 
of which could be either true or false. Suppose that

1. P0 and P1 are true, and

2. For all 𝑛 ≥ 2, if Pn-1 and Pn-2 are true, then so is Pn.

Then all of the statements are true!
Other versions:

• Can have k > 2 base cases
• Doesn’t need to start at 0



Example: Binary Search

• Given an array a[] of positive integers in increasing 
order, and an integer x, find location of x in a[].
• Take “indexOf” approach: return −1 if x is not in a[]

protected static int recBinarySearch(int a[], int value,
int low, int high) {

if (low > high) return -1;
else {

int mid = (low + high) / 2; //find midpoint
if (a[mid] == value) return mid; //first comparison

//second comparison
else if (a[mid] < value) //search upper half
return recBinarySearch(a, value, mid + 1, high);
else //search lower half

return recBinarySearch(a, value, low, mid - 1);
}



Binary Search takes O(log n) Time

Can we use induction to prove this?
• Claim: If n = high - low +1, then recBinSearch

performs at most c (1 + log 𝑛) operations, where c is 
twice the number of statements in recBinSearch

• Base case: n = 1: Then low = high so only c 
statements execute (method runs twice) and 𝑐 ≤
𝑐(1 + log 1)

• Assume that claim holds for some 𝑛 ≥ 1, does it 
hold for 𝑛 + 1? [Note: 𝑛 + 1 > 1, so low < high]

• Problem: Recursive call is not on n---it’s on n/2.

• Solution: We need a better version of the PMI….



Mathematical Induction

Principle of Mathematical Induction (Strong)
Let P(0), P(1), P(2), ... Be a sequence of statements, 
each of which could be either true or false. Suppose 
that, for some 𝑘 ≥ 0

1. P(0), P(1), ... , P(k) are true, and
2. For every 𝑛 ≥ 𝑘, if P(1), P(2), ... , P(n) are true, then 

so is P(n+1).

Then all of the statements are true!



Binary Search takes O(log n) Time

Try again now:
• Assume that for some 𝑛 ≥ 1, the claim holds for all 
𝑘 ≤ 𝑛, does claim hold for n+1? 

• Yes! Either
• x = a[mid], so a constant number of operations are 

performed, or

• RecBinSearch is called on a sub-array of size at most n/2, 
and by induction, at most c(1 + log (n/2)) operations are 
performed.
• This gives a total of at most c + c(1 + log(n/2)) = c + c(log(2) + 

log(n/2)) = c + c(log n) = c(1 + log n) statements



Longest Increasing Subsequence

• Given an array a[] of positive integers, find the length 
of the largest subsequence of (not necessary 
consecutive) elements such that for any pair a[i], a[j] 
in the subsequence, if i<j, then a[i] < a[j].

• Example 10 7 12 3 5 11 8 9 1 15 has 3 5 8 9 15 as 
its longest increasing subsequence (LIS), so the 
length is 5.

• How could we find the LIS length of a[]? 

• How could we prove our method was correct?

• Let’s think....



Longest Increasing Subsequence
• We’ll assume all numbers are positive
• (Brilliant) Observation: A LIS for a[1 ... n] either 

contains a[1] … or it doesn’t.
• Therefore, a LIS for a[1 ... n] either

• Doesn’t contain a[1] and is just a LIS for a[2 ... n]
• Does contain a[1], along with an LIS for a[2 ... n] such that 

every element in the LIS is > a[1], or

• So the LIS length is either
• Or the LIS length for a[2..n]
• 1 + LIS length for a[2..n] where every element in LIS is > a[1]

• So the problem to solve is: find the LISL for a[] given that every 
element in LIS is at least some threshold value



Longest Increasing Subsequence
// Pre: curr < arr.length

// Post: returns length of LIS of arr[curr…] having all > threshold
public static int lislHelper(int[] arr, int curr, int threshold ) {

if(curr == arr.length -1)
if (return arr[curr] > threshold) return 1;

else return 0;
else

int usingFirst = 0;

if(arr[curr] > threshold)
usingFirst = 1 + lislHelper(arr, curr+1, arr[curr]);

int notUsingFirst = lislHelper(arr, curr+1, threshold);
return Math.max(usingFirst, notUsingFirst);

}



Bubble Sort

• First Pass:
• ( 5 1 3 2 9 ) ® ( 1 5 3 2 9 ) 

• ( 1 5 3 2 9 ) ® ( 1 3 5 2 9 )
• ( 1 3 5 2 9 ) ® ( 1 3 2 5 9 )

• ( 1 3 2 5 9 ) ® ( 1 3 2 5 9 ) 

• Second Pass:
• ( 1 3 2 5 9 ) ® (1 3 2 5 9 )
• ( 1 3 2 5 9 ) ® ( 1 2 3 5 9 )

• ( 1 2 3 5 9 ) ® ( 1 2 3 5 9 )

• Third Pass:
• ( 1 2 3 5 9 ) -> (1 2 3 5 9 )

• ( 1 2 3 5 9 ) -> ( 1 2 3 5 9 )

• Fourth Pass:
• ( 1 2 3 5 9 ) -> (1 2 3 5 9 )

http://www.youtube.com/watch?v=lyZQPjUT5B4
http://www.visualgo.net/sorting

http://www.youtube.com/watch?v=lyZQPjUT5B4
http://www.visualgo.net/sorting


Sorting Preview: Insertion Sort
• Simple sorting algorithm that works by building a 

sorted list one entry at a time
• Less efficient on large lists than more advanced 

algorithms
• Advantages:

• Simple to implement and efficient on small lists
• Efficient on data sets which are already substantially sorted 

• Time complexity
• O(n2)

• Space complexity
• O(n)



Sorting Preview: Insertion Sort

• 5 7 0 3 4 2 6 1
• 5 7 0 3 4 2 6 1
• 0 5 7 3 4 2 6 1
• 0 3 5 7 4 2 6 1
• 0 3 4 5 7 2 6 1
• 0 2 3 4 5 7 6 1
• 0 2 3 4 5 6 7 1
• 0 1 2 3 4 5 6 7



Sorting Preview: Selection Sort

• Similar to insertion sort
• Performs worse than insertion sort in general

• Noted for its simplicity and performance advantages 
when compared to complicated algorithms

• The algorithm works as follows:
• Find the maximum value in the list

• Swap it with the value in the last position
• Repeat the steps above for remainder of the list (ending at 

the second to last position)



Sorting Preview: Selection Sort

• 11 3 27 5 16
• 11 3 16 5 27
• 11 3 5 16 27
• 5 3 11 16 27
• 3 5 11 16 27

• Time Complexity:
• O(n2)

• Space Complexity:
• O(n) 


