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Administrative Details

• Remember: First Problem Set is online
• Due at beginning of class on Friday
• Lab 3
• You may work with a partner

• Fill out the Google Form by 4 pm today (check email!)

• Come to lab with a plan!
• Answer questions before lab



Last Time

• Measuring Computational Complexity
• Introduction to Recursion



Today

• More Recursion
• Mathematical Induction (Weak)
• Mathematical Induction (Strong)



Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)

Let P0, P1, P2, ... Be a sequence of statements, 
each of which could be either true or false. 
Suppose that

1. P0 and P1 are true, and

2. Whenever Pn-1 and Pn-2 are true, then so is Pn.

Then all of the statements are true!

Other versions:

• Can have k > 2 base cases

• Doesn’t need to start at 0



Example: Binary Search

• Given an array a[] of positive integers in increasing 
order, and an integer x, find location of x in a[].
• Take “indexOf” approach: return -1 if x is not in a[]

protected static int recBinarySearch(int a[], int value,
int low, int high) {

if (low > high) return -1;
else {

int mid = (low + high) / 2; //find midpoint
if (a[mid] == value) return mid; //first comparison

//second comparison
else if (a[mid] < value) //search upper half
return recBinarySearch(a, value, mid + 1, high);
else //search lower half

return recBinarySearch(a, value, low, mid - 1);
}



Binary Search takes O(log n) Time

Can we use induction to prove this?

• Claim: If n = high - low + 1, then recBinSearch
performs at most c (1+ log n) operations, where c is 
twice the number of statements in recBinSearch

• Base case: n = 1: Then low = high so only c 
statements execute (method runs twice) and c ≤ 
c(1+log 1)

• Assume that claim holds for some n ≥ 1, does it 
hold for n+1? [Note: n+1 > 1, so low < high]

• Problem: Recursive call is not on n---it’s on n/2.

• Solution: We need a better version of the PMI….



Mathematical Induction

Principle of Mathematical Induction (Strong)

Let P(0), P(1), P(2), ... Be a sequence of 
statements, each of which could be either true or 
false. Suppose that, for some k ≥ 0

1. P(0), P(1), ... , P(k) are true, and

2. Whenever P(1), P(2), ... , P(n) are true, then so is 
P(n+1).

Then all of the statements are true!



Binary Search takes O(log n) Time

Try again now:

• Assume that for some n ≥ 1, the claim holds for all 
k ≤ n, does claim hold for n+1? 

• Yes! Either

• x = a[mid], so a constant number of operations are 
performed, or

• RecBinSearch is called on a sub-array of size n/2, and 
by induction, at most c(1 + log (n/2)) operations are 
performed.

• This gives a total of at most c + c(1 + log(n/2)) = c + c(log(2) + 
log(n/2)) = c + c(log n) = c(1 + log n) statements



Longest Increasing Subsequence

• Given an array a[] of positive integers, find the length 
of the largest subsequence of (not necessary 
consecutive) elements such that for any pair a[i], a[j] 
in the subsequence, if i<j, then a[i] < a[j].

• Example 10 7 12 3 5 11 8 9 1 15 has 3 5 8 9 15 as 
its longest increasing subsequence (LIS), so the 
length is 5.

• How could we find the LIS length of a[]? 

• How could we prove our method was correct?

• Let’s think....



Longest Increasing Subsequence
• We’ll assume all numbers are positive
• (Brilliant) Observation: A LIS for a[1 ... n] either 

contains a[1] … or it doesn’t.
• Therefore, a LIS for a[1 ... n] either

• Doesn’t contain a[1] and is just a LIS for a[2 ... n]
• Does contain a[1], along with an LIS for a[2 ... n] such that 

every element in the LIS is > a[1], or

• So the LIS length is either
• Or the LIS length for a[2..n]
• 1 + LIS length for a[2..n] where every element in LIS is > a[1]

• So the problem to solve is: find the LISL for a[] given that every 
element in LIS is at least some threshold value



Longest Increasing Subsequence
// Pre: curr < arr.length

// Post: returns length of LIS of arr[curr…] having all > threshold
public static int lislHelper(int[] arr, int curr, int threshold ) {

if(curr == arr.length -1)
if (return arr[curr] > threshold) return 1;

else return 0;
else

int usingFirst = 0;

if(arr[curr] > threshold)
usingFirst = 1 + lislHelper(arr, curr+1, arr[curr]);

int notUsingFirst = lislHelper(arr, curr+1, threshold);
return Math.max(usingFirst, notUsingFirst);

}



Bubble Sort

• First Pass:
• ( 5 1 3 2 9 ) ® ( 1 5 3 2 9 ) 

• ( 1 5 3 2 9 ) ® ( 1 3 5 2 9 )
• ( 1 3 5 2 9 ) ® ( 1 3 2 5 9 )

• ( 1 3 2 5 9 ) ® ( 1 3 2 5 9 ) 

• Second Pass:
• ( 1 3 2 5 9 ) ® (1 3 2 5 9 )
• ( 1 3 2 5 9 ) ® ( 1 2 3 5 9 )

• ( 1 2 3 5 9 ) ® ( 1 2 3 5 9 )

• Third Pass:
• ( 1 2 3 5 9 ) -> (1 2 3 5 9 )

• ( 1 2 3 5 9 ) -> ( 1 2 3 5 9 )

• Fourth Pass:
• ( 1 2 3 5 9 ) -> (1 2 3 5 9 )

http://www.youtube.com/watch?v=lyZQPjUT5B4
http://www.visualgo.net/sorting

http://www.youtube.com/watch?v=lyZQPjUT5B4
http://www.visualgo.net/sorting


Sorting Preview: Insertion Sort
• Simple sorting algorithm that works by building a 

sorted list one entry at a time
• Less efficient on large lists than more advanced 

algorithms
• Advantages:

• Simple to implement and efficient on small lists
• Efficient on data sets which are already substantially sorted 

• Time complexity
• O(n2)

• Space complexity
• O(n)



Sorting Preview: Insertion Sort

• 5 7 0 3 4 2 6 1
• 5 7 0 3 4 2 6 1
• 0 5 7 3 4 2 6 1
• 0 3 5 7 4 2 6 1
• 0 3 4 5 7 2 6 1
• 0 2 3 4 5 7 6 1
• 0 2 3 4 5 6 7 1
• 0 1 2 3 4 5 6 7



Sorting Preview: Selection Sort

• Similar to insertion sort
• Performs worse than insertion sort in general

• Noted for its simplicity and performance advantages 
when compared to complicated algorithms

• The algorithm works as follows:
• Find the maximum value in the list

• Swap it with the value in the last position
• Repeat the steps above for remainder of the list (ending at 

the second to last position)



Sorting Preview: Selection Sort

• 11 3 27 5 16
• 11 3 16 5 27
• 11 3 5 16 27
• 5 3 11 16 27
• 3 5 11 16 27

• Time Complexity:
• O(n2)

• Space Complexity:
• O(n) 


