CSCI 136
 Data Structures \& Advanced Programming

Lecture 7
Fall 2019
Instructors: Bill \&Sam

Last Time

- Vector Implementation
- Condition Checking
- Pre- and post-conditions

Today

- Problem set I and handout
- Assertions
- Asymptotic Growth \& Measuring Complexity (from previous slide deck)
- Introduction to Recursion \& Induction
- (maybe)

Pre and Post Conditions

- Recall charAt (int index) in Java String class
- What are the pre-conditions for charAt?
- 0 <= index < length()
- What are the post-conditions?
- Method returns char at position index in string
- We put pre and post conditions in comments above most methods

```
/* pre: 0 \leq index < length
    * post: returns char at position index
    */
    public char charAt(int index) { ... }
```


Pre and Post Conditions

- Pre and post conditions "form a contract"
- Post-condition is guaranteed if method is called when pre-condition is true
- Examples:
- s.charat(s.length() - 1): index < length, so valid
- s.charAt(s.length() + 1): index $>$ length, not valid
- These conditions document requirements that user of method should satisfy
- But, as comments, they are not enforced

Other Examples

Other places pre and post conditions are useful

```
// Pre: other is of type Card
// Post: Returns true if suits and ranks match
public boolean equals(Object other) {
    Card oc = (Card) other;
    return this.getRank() == oc.getRank() &&
    this.getSuit() == oc.getSuit();
```

\}

Assert Class

- Pre- and post-condition comments are important for documenting code.
- Better if the program could catch error and "gracefully" halt (with useful information)
- The Assert class (in structure5 package) allows us to programmatically check for preand post-conditions

Assert Class

The Assert class contains the methods

```
public static void pre(boolean test, String message);
public static void post(boolean test, String message);
public static void condition(boolean test, String message);
public static void fail(String message);
```

If the boolean test is NOT satisfied, an exception is raised, the message is printed and the program halts

Assert Examples

```
The Vector class uses Assert in many places
// Pre: initialCapacity >= 0
public Vector(int initialCapacity) {
    Assert.pre(initialCapacity >= 0,"Capacity
    must not be negative");
// Pre: 0 <= index && index < size()
public E elementAt(int index) {
```

```
Assert.pre(0 <= index \&\& index < size(),"index
```

Assert.pre(0 <= index \&\& index < size(),"index
is within bounds");

```
    is within bounds");
```


General Rules about Assert

I. State pre/post conditions in comments
2. Check conditions in code using "Assert"
3. Use Fail in unexpected cases (such as the default block of a switch statement)

- Any questions?
- You can start using Assertions in Lab 2

The Java assert keyword

- An alternative to Duane's Assert class
- Added in Java I. 4
- Two variants
- assert boolean_expression
- Throws an AssertionError if the expression is false
- assert boolean_expression : other_expression
- In addition, prints value of other_expression

Measuring Computational Cost

Consider these two code fragments...

```
for (int i=0; i < arr.length; i++)
    if (arr[i] == x) return "Found it!";
```

...and...

```
for (int i=0; i < arr.length; i++)
    for (int j=0; j < arr.length; j++)
    if( i !=j && arr[i] == arr[j]) return "Match!";
```

How long does it take to execute each block?

Measuring Computational Cost

- How can we measure the amount of work needed by a computation?
- Absolute clock time
- Problems?
- Different machines have different clocks
- Too much other stuff happening (network, OS, etc)
- Hardware changes can have significant effects
- Not consistent. Need lots of tests to predict future behavior

Measuring Computational Cost

- Counting computations
- Count all computational steps?
- Count how many "expensive" operations were performed?
- Count number of times " x " happens?
- For a specific event or action " x "
- i.e., How many times a certain variable changes
- Question: How accurate do we need to be?
- 64 vs 65 ? 100 vs I05? Does it really matter??

An Example

```
// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {
int maxPos = 0 // A wild guess
for(int i = 1; i < arr.length; i++)
    if (arr[maxPos] < arr[i]) maxPos = i;
```

 return maxPos;
 \}

- Can we count steps exactly?
- "if" makes it hard
- Idea: Overcount: assume "if" block always runs
- Overcounting gives upper bound on run time
- Can also undercount for lower bound
- Overcount: 4(n-I) + 4; undercount: $3(n-1)+4$

Measuring Computational Cost

- Rather than keeping exact counts, we want to know the order of magnitude of occurrences
- 60 vs 600 vs 6000 , not 65 vs 68
- n, not $4(n-1)+4$
- We want to make comparisons without looking at details and without running tests
- Avoid using specific numbers or values
- Look for overall trends as data grows

Measuring Computational Cost

- How does algorithm scale with problem size?
- E.g.: If I double the size of the problem instance, how much longer will it take to solve:
- Find maximum: $(n-1) \rightarrow(2 n-1)(\approx$ twice as long)
- Bubble sort: $\frac{n(n-1)}{2} \rightarrow \frac{2 n(2 n-1)}{2}(\approx 4$ times as long)
- Subset sum: $2^{n-1} \rightarrow 2^{2 n-1} \quad\left(2^{n}\right.$ times as long!!!)
- Etc.
- We will also measure amount of space used by an algorithm using the same ideas....

Function Growth

Consider the following functions, for $x \geq 1$

- $f(x)=1$
- $g(x)=\log _{2} x / /$ Reminder: if $x=2^{n}, \log _{2} x=n$
- $h(x)=x$
- $m(x)=x \log _{2} x$
- $n(x)=x^{2}$
- $p(x)=x^{3}$
- $r(x)=2^{x}$

Function Growth

Function Growth

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	n	$n \log _{2} n$	n^{2}	n^{3}	1.5^{n}	2^{n}	$n!$
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{25} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Function Growth \& Big-O

- Rule of thumb: ignore multiplicative constants
- Examples:
- Treat n and $n / 2$ as same order of magnitude
- $\mathrm{n}^{2} / 1000,2 \mathrm{n}^{2}$, and $1000 \mathrm{n}^{2}$ are "pretty much" just n^{2}
- $a_{0} n^{k}+a_{1} n^{k-1}+a_{1} n^{k-2}+a_{k}$ is roughly n^{k}
- The key is to find the most significant or dominant term
- Ex: $\lim _{x \rightarrow \infty}\left(3 x^{4}-10 x^{3}-I\right) / x^{4}=3$ (Why?)
- So $3 x^{4}-10 x^{3}-1$ grows "like" x^{4}

Asymptotic Bounds (Big-O Analysis)

- A function $f(n)$ is $O(g(n))$ if and only if there exist positive constants c and n_{0} such that

$$
|f(n)| \leq c \cdot g(n) \text { for all } n \geq n_{0}
$$

- $c \cdot g$ is "at least as big as" f for large \mathbf{n}
- Up to a multaplicative constant c!
- Example:
- $f(n)=n^{2} / 2$ is $O\left(n^{2}\right)$
- $f(n)=1000 n^{3}$ is $O\left(n^{3}\right)$
- $f(n)=n / 2$ is $O(n)$

Determining "Best" Upper Bounds

- We typically want the most conservative upper bound when we estimate running time
- And among those, the simplest
- Example: Let $\mathrm{f}(\mathrm{n})=3 \mathrm{n}^{2}$
- $f(n)$ is $O\left(n^{2}\right)$
- $f(n)$ is $O\left(n^{3}\right)$
- $f(n)$ is $O\left(2^{n}\right)$ (see next slide)
- $\mathrm{f}(\mathrm{n})$ is NOT O(n) (!!)
- "Best" upper bound is $O\left(\mathrm{n}^{2}\right)$
- We care about \mathbf{c} and $\mathbf{n}_{\mathbf{0}}$ in practice, but focus on size of \mathbf{g} when designing algorithms and data structures

What's n_{0} ? Messy Functions

- Example: Let $f(n)=3 n^{2}-4 n+1$.
$\mathrm{f}(\mathrm{n})$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Well, $3 n^{2}-4 n+1 \leq 3 n^{2}+1 \leq 4 n^{2}$, for $n \geq$ I
- So, for $\mathrm{c}=4$ and $\mathrm{n}_{0}=1$, we satisfy Big-O definition
- Example: Let $f(n)=n^{k}$, for any fixed $k \geq 1$. $f(n)$ is $O\left(2^{n}\right)$
- Harder to show: Is $\mathrm{n}^{\mathrm{k}} \leq \mathrm{c} 2^{\mathrm{n}}$ for some $\mathrm{c}>0$ and large enough n ?
- It is if and only if $\log _{2}\left(n^{k}\right) \leq \log _{2}\left(2^{n}\right)$, that is, iff $k \log _{2}(n) \leq n$.
- That is iff $k \leq n / \log _{2}(n)$. But $n / \log _{2}(n) \rightarrow \infty$ as $n \rightarrow \infty$
- This implies that for some n_{0} on $n / \log _{2}(n) \geq k$ if $n \geq n_{0}$
- Thus $n \geq k \log _{2}(n)$ for $n \geq n_{0}$ and so $2^{n} \geq n^{k}$

Input-dependent Running Times

- Algorithms may have different running times for different input values
- Best case (typically not useful)
- BubbleSort already sorted array: O(n)
- Find item in first place that we look: O(I)
- Worst case (generally useful, sometimes misleading)
- Don't find item in list: O(n)
- BubbleSort array that's in reverse order: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Average case (useful, but often hard to compute)
- Linear search $O(n)$
- QuickSort random array $O(n \log n) \leftarrow W e ’ l l$ sort soon

Vector Operations : Worst-Case

For $\mathrm{n}=$ Vector size (not capacity!):

- $O(1)$: size(), capacity(), isEmpty(), get(i), set(i), firstElement(), lastElement()
- $O(n)$: indexOf(), contains(), remove(elt), remove(i)
- What about add methods?
- If Vector doesn't need to grow
- add(elt) is $O(1)$ but add(elt, i$)$ is $O(n)$
- Otherwise, depends on ensureCapacity() time
- Time to compute newLength : $O(\log n)$
- Time to copy array: $O(n)$
- $O(\log n)+O(n)$ is $O(n)$

Vector: Add Method Complexity

Suppose we grow the Vector's array by a fixed amount d. How long does it take to add n items to an empty
Vector?

- The array will be copied each time its capacity needs to exceed a multiple of d
- At sizes 0, d, 2d, ..., n/d
- Copying an array of size kd takes ckd steps for some constant c , giving a total of

$$
\sum_{k=1}^{n / d} c \cdot k \cdot d=c \cdot d \sum_{k=1}^{n / d} k=c \cdot d \cdot \frac{(n / d)(n / d+1)}{2}=O\left(n^{2}\right)
$$

Vector: Add Method Complexity

Suppose we want to grow the Vector's array by doubling. How long does it take to add n items to an empty Vector?

- The array will be copied each time it's capacity needs to exceed a power of 2.
- At sizes $0,1,2,4,8, \ldots, 2^{\left\lfloor\log _{2} n\right\rfloor}$
- Copying an array of size 2^{k} takes $c 2^{k}$ steps for some constant c, giving a total of:

$$
\sum_{k=1}^{\log _{2} n} c \cdot 2^{k}=c \sum_{k=1}^{\log _{2} n} 2^{k}=c \cdot\left(2^{1+\log _{2} n}-1\right)=O(n)
$$

Common Complexities

For $\mathrm{n}=$ measure of problem size:

- $O(1)$: constant time and space
- $O(\log n)$: divide and conquer algorithms, binary search
- $O(n)$: linear dependence, simple list lookup
- $O(n \log n)$: divide and conquer sorting algorithms
- $O\left(n^{2}\right)$: matrix addition, selection sort
- $O\left(n^{3}\right)$: matrix multiplication
- $O\left(n^{12}\right)$: Original AKS primality test for n-bit integers
- $O\left(2^{n}\right)$: subset sum, graph 3-coloring, satisfiability, ...
- $O(n!)$: traveling salesman problem (in fact $O\left(n^{2} 2^{n}\right)$)

Recursion

- General problem solving strategy
- Break problem into smaller pieces (sub-problems)
- Sub-problems are typically smaller versions of same problem

Recursion

- Many algorithms are recursive
- Can be easier to understand, prove correctness, or determine efficiency
- Today we will review recursion and then talk about techniques for reasoning about recursive algorithms

Factorial

- $\mathrm{n}!=\mathrm{n} \bullet(\mathrm{n}-\mathrm{I}) \bullet(\mathrm{n}-2) \bullet \ldots \bullet \mathrm{l}$
- How can we implement this?
- We could use a for loop...

$$
\begin{aligned}
& \text { int product }=1 ; \\
& \text { for(int } i=1 ; i<=n ; i++) \\
& \quad \text { product } *=i ;
\end{aligned}
$$

- But we could also write it recursively....

Factorial

- $n!=n \bullet(n-I) \bullet(n-2) \bullet \ldots \bullet l$
- Recursive definition (what "..." really means!)
- $\mathrm{n}!=\mathrm{n} \bullet(\mathrm{n}-\mathrm{I})$!
- 0 ! = I
// Pre: n >= 0
public static int fact(int n) \{
if ($\mathrm{n}==0$) return 1;
else return $n * f a c t(n-1)$;
\}

Factorial

Factorial

- In recursion, we always use the same basic approach
- What's our base case? [Sometimes "cases"]
- $\mathrm{n}=0$; fact(0) $=1$
- What's the recursive relationship?
- $\mathrm{n}>0$; fact(n) $=\mathrm{n} \bullet$ fact($\mathrm{n}-\mathrm{I})$

Fibonacci Numbers

- I, I, 2, 3, 5, 8, I3, ...
- Definition
- $F_{0}=I, F_{1}=I$
- For $n>I, F_{n}=F_{n-1}+F_{n-2}$
- Inherently recursive!
- It appears almost everywhere
- Growth: Populations, plant features
- Architecture
- Data Structures!

fib.java

```
public class fib{
    // pre: n is non-negative
        public static int fib(int n) {
        if (n==0 || n == 1) {
            return 1;
        }
        else {
            return fib(n - 1) + fib(n - 2);
        }
    }
    public static void main(String args[]) {
        System.out.println(fib(Integer.valueOf(args[0]).intValue()));
    }
}
```

Demo: RecursiveMethods.java....
Question: Why is fib so slow?!

Towers of Hanoi

- Demo
- Base case:
- One disk: Move from start to finish
- Recursive case (n disks):
- Move smallest n -I disks from start to temp
- Move bottom disk from start to finish
- Move smallest n -I disks from temp to finish
- Let's try to write it....

Recursion Tradeoffs

- Advantages
- Often easier to construct recursive solution
- Code is usually cleaner
- Some problems do not have obvious nonrecursive solutions
- Disadvantages
- Overhead of recursive calls
- Can use lots of memory (need to store state for each recursive call until base case is reached)
- E.g. recursive fibonacci method

Alternate contains() for Vector

```
// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {
    if (from > to)
        return false; // Base case: empty range
    else
        return elt.equals(elementData[from]) ||
                        contains(elt, from+1, to);
}
public boolean contains(E elt) {
    return contains(elt, 0, size()-1); }
```

- What's the time complexity of contains?
- O (to - from $+I)=O(n)(n$ is the portion of the array searched $)$
- Why?
- Bootstrapping argument! True for: to - from $=0$, to - from $=1, \ldots$
- Let's formalize this bootstrapping idea....

Mathematical Induction

- The mathematical cousin of recursion is induction
- Induction is a proof technique
- Reflects the structure of the natural numbers
- Use to simultaneously prove an infinite number of theorems!

Mathematical Induction

- Example: Prove that for every $\mathrm{n} \geq 0$

$$
P_{n}: \sum_{i=0}^{n} i=0+1+\ldots+n=\frac{n(n+1)}{2}
$$

- Proof by induction:
- Base case: P_{n} is true for $n=0$ (just check it!)
- Induction step: If P_{n} is true for some $n \geq 0$, then P_{n+1} is true.
$P_{n+1}: 0+1+\ldots+n+(n+1)=\frac{(n+1)((n+1)+1)}{2}=\frac{(n+1)(n+2)}{2}$
Check: $0+1+\ldots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}$
- First equality holds by assumed truth of P_{n} !

Mathematical Induction

Principle of Mathematical Induction (Weak)
Let $\mathrm{P}(0), \mathrm{P}(\mathrm{I}), \mathrm{P}(2), \ldots$ Be a sequence of statements, each of which could be either true or false. Suppose that
I. $P(0)$ is true, and
2. For all $\mathbf{n} \boldsymbol{0}$, if $\mathbf{P}(\mathbf{n})$ is true, then so is $\mathrm{P}(\mathrm{n}+1)$.
Then all of the statements are true!

Note: Often Property 2 is stated as
2. For all $n>0$, if $P(n-I)$ is true, then so is $P(n)$.

Apology: I do this a lot, as you'll see on future slides!

Mathematical Induction

- Prove: $\sum_{i=0}^{n} 2^{i}=2^{0}+2^{1}+2^{2}+\ldots+2^{n}=2^{n+1}-1$
- Prove: $0^{3}+1^{3}+\ldots+n^{3}=(0+1+\ldots+n)^{2}$

Proof: $0^{3}+1^{3}+\ldots+n^{3}=(0+1+\ldots+n)^{2}$ Note: I'm doing the $\mathrm{n}-1 \rightarrow \mathrm{n}$ version

$$
\begin{aligned}
\left(0^{3}+1^{3}+\ldots n^{3}\right) & =\left(0^{3}+1^{3}+\ldots+(n-1)^{3}\right)+n^{3} \\
\text { Induction } & =(0+1+\ldots+(n-1))^{2}+n^{3} \\
& =\left(\frac{n(n-1)}{2}\right)^{2}+n^{3} \\
& =n^{2}\left(\frac{(n-1)^{2}+4 n}{4}\right) \\
& =n^{2}\left(\frac{n^{2}+2 n+1}{4}\right) \\
& =n^{2}\left(\frac{(n+1)^{2}}{4}\right) \\
& =\left(\frac{n(n+1)}{2}\right)^{2} \\
& =(0+1+\ldots+n)^{2}
\end{aligned}
$$

What about Recursion?

- What does induction have to do with recursion?
- Same form!
- Base case
- Inductive case that uses simpler form of problem
- Example: factorial
- Prove that fact(n) requires n multiplications
- Base case: $\mathrm{n}=0$ returns $\mathrm{I}, 0$ multiplications
- Assume true for all $k<n$, so fact (k) requires k multiplications.
- fact(n) performs one multiplication ($n^{*} f a c t(n-I)$). We know that fact($n-I$) requires n-I multiplications. $I+n-I=n$, therefore fact(n) requires n multiplications.

Counting Method Calls

- Example: Fibonacci
- Prove that fib(n) makes at least fib(n) calls to fib()
- Base cases: $\mathrm{n}=0$: I call; $\mathrm{n}=\mathrm{I}$; I call
- Assume that for some $\mathbf{n} \mathbf{2}$, fib($\mathbf{n - 1}$) makes at least n-I calls to fib() and fib(n-2) makes at least fib(n-2) calls to fib().
- Claim: Then fib(n) makes at least fib(n) calls to fib()
- I initial call: fib(n)
- By induction: At least fib(n-I) calls for fib(n-I)
- And as least fib(n-2) calls for fib(n-2)
- Total: $\mathrm{I}+\mathrm{fib}(\mathrm{n}-\mathrm{I})+\mathrm{fib}(\mathrm{n}-2)>\mathrm{fib}(\mathrm{n}-\mathrm{I})+\mathrm{fib}(\mathrm{n}-2)=\mathrm{fib}(\mathrm{n})$ calls
- Note: Need two base cases!
- One can show by induction that for $\mathrm{n}>10$: fib(n) $>(\mathrm{I} .5)^{\mathrm{n}}$
- Thus the number of calls grows exponentially!
- We can visualize this with a method call graph....

Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)
Let $P_{0}, P_{1}, P_{2}, \ldots$ Be a sequence of statements, each of which could be either true or false. Suppose that
I. P_{0} and P_{1} are true, and
2. For all $n \geq \mathbf{2}$, if \mathbf{P}_{n-1} and P_{n-2} are true, then so is P_{n}.
Then all of the statements are true!
Other versions:

- Can have $\mathrm{k}>2$ base cases
- Doesn't need to start at 0

Example: Binary Search

- Given an array $a[]$ of positive integers in increasing order, and an integer x, find location of x in $a[]$.
- Take "indexOf" approach: return -I if x is not in a[]

```
protected static int recBinarySearch(int a[], int value,
            int low, int high) {
if (low > high) return -1;
else {
        int mid = (low + high) / 2; //find midpoint
        if (a[mid] == value) return mid; //first comparison
        //second comparison
        else if (a[mid] < value) //search upper half
        return recBinarySearch(a, value, mid + 1, high);
        else //search lower half
            return recBinarySearch(a, value, low, mid - 1);
```

\}

Binary Search takes $O(\log n)$ Time

Can we use induction to prove this?

- Claim: If $\mathrm{n}=$ high - low +I , then recBinSearch performs at most c $(I+\log n)$ operations, where c is twice the number of statements in recBinSearch
- Base case: $\mathrm{n}=\mathrm{I}$: Then low = high so only c statements execute (method runs twice) and c \leq c(I+log I)
- Assume that claim holds for some $\mathrm{n} \geq \mathbb{1}$, does it hold for $\mathrm{n}+\mathrm{I}$? [Note: $\mathrm{n}+\mathrm{I}$ > I, so low < high]
- Problem: Recursive call is not on n---it's on $n / 2$.
- Solution: We need a better version of the PMI....

Mathematical Induction

Principle of Mathematical Induction (Strong)
Let $\mathrm{P}(0), \mathrm{P}(\mathrm{I}), \mathrm{P}(2), \ldots$ Be a sequence of statements, each of which could be either true or false. Suppose that, for some $\mathrm{k} \geq$ ©
I. $\mathrm{P}(0), \mathrm{P}(\mathrm{I}), \ldots, \mathrm{P}(\mathrm{k})$ are true, and
2. For every $\mathrm{n} \mathbf{\mathrm { k }}$, if $\mathbf{P}(\mathbf{1}), \mathbf{P (2) , \ldots , P (\mathbf { n })}$ are true, then so is $P(n+1)$.
Then all of the statements are true!

Binary Search takes $O(\log n)$ Time

Try again now:

- Assume that for some $\mathrm{n} \geq$, , the claim holds for all $\mathrm{k} \leq \mathbf{n}$, does claim hold for $\mathrm{n}+\mathrm{I}$?
- Yes! Either
- $\mathrm{x}=\mathrm{a}$ [mid], so a constant number of operations are performed, or
- RecBinSearch is called on a sub-array of size $n / 2$, and by induction, at most $c(1+\log (n / 2))$ operations are performed.
- This gives a total of at most $c+c(1+\log (n / 2))=c+c(\log (2)+$ $\log (n / 2))=c+c(\log n)=c(1+\log n)$ statements

Wait...what???

- Prove: All horses are the same color.
- Base case: $\mathrm{n}=\mathrm{I}$. Clear
- Induction ($n>1$): Assume we have a set X of n horses. Let x and y be two of the horses. $X-\{x\}$ is a set of n-I horses, so (by induction) they are all the same color. Similarly, all horses in $X-\{y\}$ are the same color. Now pick \mathbf{z} in $X, z \neq \mathbf{X}, \mathbf{Y}$. Them \mathbf{z} is in $X-\{x\}$ and z is in $X-\{y\}$, so all all horses are the same color (as z)!
- Question: What went wrong?

