
CSCI 136
Data Structures &

Advanced Programming

Lecture 7
Fall 2019

Instructors: Bill &Sam



Last Time

• Vector Implementation
• Condition Checking
• Pre- and post-conditions



Today

• Problem set 1 and handout
• Assertions
• Asymptotic Growth & Measuring Complexity 

(from previous slide deck)
• Introduction to Recursion & Induction
• (maybe)



Pre and Post Conditions

• Recall charAt(int index) in Java String class
• What are the pre-conditions for charAt?

• 0 <= index < length()

• What are the post-conditions?
• Method returns char at position index in string

• We put pre and post conditions in comments above 
most methods 

/* pre: 0 ≤ index < length
* post: returns char at position index
*/
public char charAt(int index) { … }



Pre and Post Conditions

• Pre and post conditions “form a contract”
• Post-condition is guaranteed if method is 

called when pre-condition is true
• Examples:

• s.charAt(s.length() - 1): index < length, so valid
• s.charAt(s.length() + 1): index > length, not valid

• These conditions document requirements that 
user of method should satisfy

• But, as comments, they are not enforced



Other Examples

• Other places pre and post conditions are useful

// Pre: other is of type Card

// Post: Returns true if suits and ranks match

public boolean equals(Object other) {

Card oc = (Card) other;

return this.getRank() == oc.getRank() &&

this.getSuit() == oc.getSuit();

}



Assert Class

• Pre- and post-condition comments are 
important for documenting code.

• Better if the program could catch error and 
“gracefully” halt (with useful information)

• The Assert class (in structure5 package) 
allows us to programmatically check for pre-
and post-conditions



Assert Class

The Assert class contains the methods
public static void pre(boolean test, String message);

public static void post(boolean test, String message);

public static void condition(boolean test, String message);

public static void fail(String message);

If the boolean test is NOT satisfied, an exception is raised, 
the message is printed and the program halts



Assert Examples

The Vector class uses Assert in many places
// Pre: initialCapacity >= 0
public Vector(int initialCapacity) {

Assert.pre(initialCapacity >= 0,"Capacity 
must not be negative");

// Pre: 0 <= index && index < size()
public E elementAt(int index) {

Assert.pre(0 <= index && index < size(),"index 
is within bounds");



General Rules about Assert

1. State pre/post conditions in comments
2. Check conditions in code using “Assert”
3. Use Fail in unexpected cases (such as the 

default block of a switch statement)

• Any questions? 
• You can start using Assertions in Lab 2



The Java assert keyword

• An alternative to Duane’s Assert class
• Added in Java 1.4
• Two variants

• assert boolean_expression
• Throws an AssertionError if the expression is false 

• assert boolean_expression : other_expression
• In addition, prints value of other_expression



Measuring Computational Cost

Consider these two code fragments…
for (int i=0; i < arr.length; i++)

if (arr[i] == x) return “Found it!”;

…and…

for (int i=0; i < arr.length; i++)

for (int j=0; j < arr.length; j++)

if( i !=j && arr[i] == arr[j]) return ”Match!”;

How long does it take to execute each block?
12



Measuring Computational Cost

• How can we measure the amount of work 
needed by a computation?
• Absolute clock time

• Problems?
– Different machines have different clocks

– Too much other stuff happening (network, OS, etc)

– Hardware changes can have significant effects
– Not consistent.  Need lots of tests to predict 

future behavior

13



Measuring Computational Cost

• Counting computations
• Count all computational steps?
• Count how many “expensive” operations were 

performed?
• Count number of times “x” happens?

• For a specific event or action “x”
• i.e., How many times a certain variable changes

• Question: How accurate do we need to be?
• 64 vs 65?  100 vs 105?  Does it really matter??

14



An Example
// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0 // A wild guess
for(int i = 1; i < arr.length; i++) 

if (arr[maxPos] < arr[i]) maxPos = i;
return maxPos;

}

• Can we count steps exactly?
• ”if” makes it hard

• Idea: Overcount: assume “if” block always runs
• Overcounting gives upper bound on run time
• Can also undercount for lower bound
• Overcount: 4(n-1) + 4; undercount: 3(n-1) + 4



Measuring Computational Cost

• Rather than keeping exact counts, we want to 
know the order of magnitude of occurrences
• 60 vs 600 vs 6000, not 65 vs 68

• n, not 4(n-1) + 4

• We want to make comparisons without 
looking at details and without running tests 

• Avoid using specific numbers or values
• Look for overall trends as data grows

16



Measuring Computational Cost

• How does algorithm scale with problem size?
• E.g.: If I double the size of the problem instance, how 

much longer will it take to solve:
• Find maximum: 𝑛 − 1 → (2𝑛 − 1) ( ≈ twice as 

long)

• Bubble sort: 
( ()*

+
→ +( +()*

+
(≈ 4 times as long)

• Subset sum: 2()* → 2+()* (2n times as long!!!)
• Etc.

• We will also measure amount of space used by an 
algorithm using the same ideas….

17



Function Growth

Consider the following functions, for 𝑥 ≥ 1
• 𝑓 𝑥 = 1
• 𝑔 𝑥 = log+ 𝑥 // Reminder: if 𝑥 = 2(, log+ 𝑥 = 𝑛
• ℎ 𝑥 = 𝑥
• 𝑚 𝑥 = 𝑥 log+ 𝑥
• 𝑛 𝑥 = 𝑥+

• 𝑝 𝑥 = 𝑥7

• 𝑟 𝑥 = 29

18



Function Growth

1

log2(x)

x

x log2(x)

x2

2x

2 4 6 8 10

-20

20

40

60



Function Growth



Function Growth & Big-O

• Rule of thumb: ignore multiplicative constants
• Examples:
• Treat n and n/2 as same order of magnitude
• n2/1000, 2n2, and 1000n2 are “pretty much” just n2

• 𝑎;𝑛< + 𝑎*𝑛<)* +𝑎*𝑛<)+ + 𝑎< is roughly 𝑛<

• The key is to find the most significant or 
dominant term 

• Ex: limx→∞ (3x4 -10x3 -1)/x4 = 3 (Why?)
• So 3x4 -10x3 -1 grows “like” x4

21



Asymptotic Bounds (Big-O Analysis)

• A function f(n) is O(g(n)) if and only if there 
exist positive constants c and n0 such that 

|f(n)| ≤ c· g(n) for all n ³ n0

• c· g is “at least as big as” f for large n
• Up to a multaplicative constant c!

• Example:
• f(n) = n2/2 is O(n2)
• f(n) = 1000n3 is O(n3)

• f(n) = n/2 is O(n)
22



Determining “Best” Upper Bounds

• We typically want the most conservative upper bound 
when we estimate running time
• And among those, the simplest

• Example: Let f(n) = 3n2

• f(n) is O(n2)
• f(n) is O(n3)
• f(n) is O(2n) (see next slide)
• f(n) is NOT O(n) (!!)

• “Best” upper bound is O(n2)
• We care about c and n0 in practice, but focus on size 

of g when designing algorithms and data structures
23



What’s n0? Messy Functions

• Example: Let f(n) = 3n2 - 4n +1.              f(n) is O(n2)
• Well, 3n2 - 4n +1 ≤ 3n2 +1 ≤ 4n2, for n ≥ I
• So, for c = 4 and n0 = 1, we satisfy Big-O definition

• Example: Let f(n) = nk, for any fixed k ≥ 1.      
f(n) is O(2n)
• Harder to show: Is nk ≤ c 2n for some c > 0 and large enough n?
• It is if and only if log2(nk) ≤ log2(2n), that is, iff k log2(n) ≤ n.
• That is iff k ≤ n/log2(n). But n/log2(n) à∞ as n à ∞
• This implies that for some n0 on n/log2(n) ≥ k if n ≥ n0
• Thus n ≥ k log2(n) for n ≥ n0 and so 2n ≥ nk

24



Input-dependent Running Times
• Algorithms may have different running times for 

different input values
• Best case (typically not useful)

• BubbleSort already sorted array: O(n)
• Find item in first place that we look: O(1)

• Worst case (generally useful, sometimes misleading)
• Don’t find item in list: O(n)
• BubbleSort array that’s in reverse order: O(n2)

• Average case (useful, but often hard to compute)
• Linear search O(n)
• QuickSort random array O(n log n)  ß We’ll sort soon

25



Vector Operations : Worst-Case
For n = Vector size (not capacity!):
• 𝑂(1): size(), capacity(), isEmpty(), get(i), set(i), 

firstElement(), lastElement()
• 𝑂(𝑛): indexOf(), contains(), remove(elt), remove(i)
• What about add methods?

• If Vector doesn’t need to grow
• add(elt) is 𝑂 1 but add(elt, i) is 𝑂(𝑛)
• Otherwise, depends on ensureCapacity() time
• Time to compute newLength : 𝑂 log 𝑛
• Time to copy array: 𝑂(𝑛)
• 𝑂 log 𝑛 + 𝑂 𝑛 is 𝑂(𝑛)

26



Vector: Add Method Complexity

27

Suppose we grow the Vector’s array by a fixed amount d.
How long does it take to add n items to an empty 
Vector?
• The array will be copied each time its capacity needs 

to exceed a multiple of d
• At sizes 0, d, 2d, …, n/d

• Copying an array of size kd takes ckd steps for some 
constant c, giving a total of



Vector: Add Method Complexity
Suppose we want to grow the Vector’s array by doubling. 
How long does it take to add n items to an empty Vector?
• The array will be copied each time it’s capacity needs to 

exceed a power of 2.
• At sizes 0, 1, 2, 4, 8, … , 2 DEFG (

• Copying an array of size 2< takes 𝑐2< steps for some 
constant 𝑐, giving a total of:

28



Common Complexities
For n = measure of problem size:
• 𝑂(1): constant time and space
• 𝑂(log 𝑛): divide and conquer algorithms, binary search
• 𝑂(𝑛): linear dependence, simple list lookup
• 𝑂(𝑛 log 𝑛) : divide and conquer sorting algorithms
• 𝑂 𝑛+ :matrix addition, selection sort
• 𝑂 𝑛7 : matrix multiplication 
• 𝑂(𝑛*+): Original AKS primality test for n-bit integers
• 𝑂(2(): subset sum, graph 3-coloring, satisfiability, ...
• 𝑂(𝑛!): traveling salesman problem (in fact 𝑂(𝑛+2())

29



Recursion

• General problem solving strategy
• Break problem into smaller pieces (sub-problems)
• Sub-problems are typically smaller versions of 

same problem



Recursion

• Many algorithms are recursive
• Can be easier to understand, prove correctness, 

or determine efficiency

• Today we will review recursion and then talk 
about techniques for reasoning about 
recursive algorithms



Factorial

• n! = n • (n-1) • (n-2) • … • 1
• How can we implement this?
• We could use a for loop…

int product = 1;
for(int i = 1;i <= n; i++)

product *= i;

• But we could also write it recursively….



Factorial

• n! = n • (n-1) • (n-2) • … • 1
• Recursive definition (what “…” really means!)
• n! = n • (n-1)!
• 0! = 1

// Pre: n >= 0
public static int fact(int n) {

if (n==0) return 1;
else return n*fact(n-1);

}



fact(3)

fact(2)

fact(1)

fact(0)

1

1*1=1

2*1 = 2

3*2 = 6

Factorial



Factorial

• In recursion, we always use the same basic 
approach

• What’s our base case? [Sometimes “cases”]
• n=0; fact(0) = 1

• What’s the recursive relationship?
• n>0; fact(n) = n • fact(n-1)



Fibonacci Numbers

• 1, 1, 2, 3, 5, 8, 13, ...
• Definition
• F0 = 1, F1 = 1
• For n > 1, Fn = Fn-1 + Fn-2

• Inherently recursive!

• It appears almost everywhere
• Growth: Populations, plant features
• Architecture

• Data Structures!



fib.java
public class fib{

// pre: n is non-negative
public static int fib(int n) {

if (n==0 || n == 1) {
return 1;

}
else {

return fib(n – 1) + fib(n – 2);
}

}

public static void main(String args[]) {
System.out.println(fib(Integer.valueOf(args[0]).intValue()));

}

}

Demo: RecursiveMethods.java….
Question: Why is fib so slow?!



Towers of Hanoi

• Demo
• Base case:
• One disk: Move from start to finish

• Recursive case (n disks):
• Move smallest n-1 disks from start to temp

• Move bottom disk from start to finish
• Move smallest n-1 disks from temp to finish

• Let’s try to write it....



Recursion Tradeoffs

• Advantages
• Often easier to construct recursive solution
• Code is usually cleaner
• Some problems do not have obvious non-

recursive solutions

• Disadvantages
• Overhead of recursive calls
• Can use lots of memory (need to store state for 

each recursive call until base case is reached)
• E.g. recursive fibonacci method



Alternate contains() for Vector
// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {

if (from > to)
return false; // Base case: empty range

else
return elt.equals(elementData[from]) ||

contains(elt, from+1, to);
}

public boolean contains(E elt) {
return contains(elt, 0, size()-1); }

• What’s the time complexity of contains?
• O(to – from + 1) = O(n) (n is the portion of the array searched)
• Why?

• Bootstrapping argument! True for: to – from = 0, to – from = 1, …

• Let’s formalize this bootstrapping idea....



Mathematical Induction

• The mathematical cousin of recursion is 
induction

• Induction is a proof technique
• Reflects the structure of the natural 

numbers
• Use to simultaneously prove an infinite 

number of theorems!



Mathematical Induction
• Example: Prove that for every n ≥ 0

𝑃( ∶ ∑NO;( 𝑖 = 0 + 1 + …+ 𝑛 = 
(((Q*)

+

• Proof by induction:

• Base case: Pn is true for n = 0 (just check it!)

• Induction step: If Pn is true for some n≥0, then 
Pn+1 is true.

𝑃(Q*: 0 + 1 + …+ 𝑛 + 𝑛 + 1 =
𝑛 + 1 𝑛 + 1 + 1

2
=
(𝑛 + 1)(𝑛 + 2)

2
Check: 0 + 1 + …+ 𝑛 + 𝑛 + 1 = ( (Q*

+
+ 𝑛 + 1 = ((Q*)((Q+)

+

• First equality holds by assumed truth of Pn!



Mathematical Induction

Principle of Mathematical Induction (Weak)
Let P(0), P(1), P(2), ... Be a sequence of statements, 
each of which could be either true or false. Suppose 
that

1. P(0) is true, and
2. For all n ≥ 0, if P(n) is true, then so is 

P(n+1).

Then all of the statements are true!

Note: Often Property 2 is stated as
2. For all n > 0, if P(n-1) is true, then so is P(n).

Apology: I do this a lot, as you’ll see on future slides!



Mathematical Induction

• Prove:

• Prove:  
€ 

2i = 20 + 21 + 22 + ...+ 2n = 2n+1 −1
i= 0

n

∑

€ 

03 +13 + ...+ n3 = (0 +1+ ...+ n)2



Proof:

€ 

03 +13 + ...+ n3 = (0 +1+ ...+ n)2

(03 + 13 + ...n3) = (03 + 13 + ... + (n� 1)3) + n3

= (0 + 1 + ... + (n� 1))2 + n3

=
�

n(n� 1)
2

⇥2

+ n3

= n2

�
(n� 1)2 + 4n

4

⇥

= n2

�
n2 + 2n + 1

4

⇥

= n2

�
(n + 1)2

4

⇥

=
�

n(n + 1)
2

⇥2

= (0 + 1 + ... + n)2 48

Induction☞

Note: I’m doing the n-1 à n version 



What about Recursion?

• What does induction have to do with recursion?
• Same form!

• Base case

• Inductive case that uses simpler form of problem

• Example: factorial
• Prove that fact(n) requires n multiplications

• Base case: n = 0 returns 1, 0 multiplications
• Assume true for all k<n, so fact(k) requires k multiplications.

• fact(n) performs one multiplication (n*fact(n-1)).  We know that 
fact(n-1) requires n-1 multiplications. 1+n-1 = n, therefore fact(n) 
requires n multiplications.



Counting Method Calls

• Example: Fibonacci
• Prove that fib(n) makes at least fib(n) calls to fib()

• Base cases: n = 0: 1 call; n = 1; 1 call

• Assume that for some n≥2, fib(n-1) makes at least 
n-1 calls to fib() and fib(n-2) makes at least fib(n-2) calls to fib().

• Claim: Then fib(n) makes at least fib(n) calls to fib()
– 1 initial call: fib(n)
– By induction: At least fib(n-1) calls for fib(n-1)
– And as least fib(n-2) calls for fib(n-2)
– Total: 1 + fib(n-1) + fib(n-2) > fib(n-1) + fib(n-2) = fib(n) calls

• Note: Need two base cases!
• One can show by induction that for n > 10: fib(n) > (1.5)n

• Thus the number of calls grows exponentially!
• We can visualize this with a method call graph….



Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)
Let P0, P1, P2, ... Be a sequence of statements, each 
of which could be either true or false. Suppose that

1. P0 and P1 are true, and

2. For all n ≥ 2, if Pn-1 and Pn-2 are true, then so is 
Pn.

Then all of the statements are true!
Other versions:
• Can have k > 2 base cases

• Doesn’t need to start at 0



Example: Binary Search

• Given an array a[] of positive integers in increasing 
order, and an integer x, find location of x in a[].
• Take “indexOf” approach: return -1 if x is not in a[]

protected static int recBinarySearch(int a[], int value,
int low, int high) {

if (low > high) return -1;
else {

int mid = (low + high) / 2; //find midpoint
if (a[mid] == value) return mid; //first comparison

//second comparison
else if (a[mid] < value) //search upper half
return recBinarySearch(a, value, mid + 1, high);
else //search lower half

return recBinarySearch(a, value, low, mid - 1);
}



Binary Search takes O(log n) Time

Can we use induction to prove this?
• Claim: If n = high - low + 1, then recBinSearch

performs at most c (1+ log n) operations, where c is 
twice the number of statements in recBinSearch

• Base case: n = 1: Then low = high so only c 
statements execute (method runs twice) and c ≤ 
c(1+log 1)

• Assume that claim holds for some n ≥ 1, does it 
hold for n+1? [Note: n+1 > 1, so low < high]

• Problem: Recursive call is not on n---it’s on n/2.

• Solution: We need a better version of the PMI….



Mathematical Induction

Principle of Mathematical Induction (Strong)
Let P(0), P(1), P(2), ... Be a sequence of statements, 
each of which could be either true or false. Suppose 
that, for some k ≥ 0

1. P(0), P(1), ... , P(k) are true, and
2. For every n ≥ k, if P(1), P(2), ... , P(n) 

are true, then so is P(n+1).

Then all of the statements are true!



Binary Search takes O(log n) Time

Try again now:
• Assume that for some n ≥ 1, the claim 

holds for all k ≤ n, does claim hold for 
n+1? 

• Yes! Either
• x = a[mid], so a constant number of operations are 

performed, or

• RecBinSearch is called on a sub-array of size n/2, and by 
induction, at most c(1 + log (n/2)) operations are 
performed.
• This gives a total of at most c + c(1 + log(n/2)) = c + c(log(2) + 

log(n/2)) = c + c(log n) = c(1 + log n) statements



Wait…what???

• Prove: All horses are the same color.
• Base case: n = 1.  Clear

• Induction (n>1): Assume we have a set X of n 
horses.  Let x and y be two of the horses. X – {x} is 
a set of n-1 horses, so (by induction) they are all the 
same color.  Similarly, all horses in X – {y} are the 
same color. Now pick z in X, z ≠ x,y. Then z 
is in X-{x} and z is in X-{y}, so all all horses are the 
same color (as z)!

• Question: What went wrong?


