
CSCI 136
Data Structures &

Advanced Programming

Lecture 7
Fall 2019

Instructors: B&S

Last Time

• Vector Implementation
• Miscellany: Wrappers
• Condition Checking
• Pre- and post-conditions, Assertions

Today

• Asymptotic Growth & Measuring Complexity
(from previous slide deck)

• Introduction to Recursion & Induction

Recursion

• General problem solving strategy
• Break problem into smaller pieces (sub-problems)
• Sub-problems are typically smaller versions of

same problem

Recursion

• Many algorithms are recursive
• Can be easier to understand, prove correctness,

or determine efficiency

• Today we will review recursion and then talk
about techniques for reasoning about
recursive algorithms

Factorial

• n! = n • (n-1) • (n-2) • … • 1
• How can we implement this?
• We could use a for loop…

int product = 1;
for(int i = 1;i <= n; i++)

product *= i;

• But we could also write it recursively….

Factorial

• n! = n • (n-1) • (n-2) • … • 1
• Recursive definition (what “…” really means!)
• n! = n • (n-1)!
• 0! = 1

// Pre: n >= 0
public static int fact(int n) {

if (n==0) return 1;
else return n*fact(n-1);

}

fact(3)

fact(2)

fact(1)

fact(0)

1

1*1=1

2*1 = 2

3*2 = 6

Factorial

Factorial

• In recursion, we always use the same basic
approach

• What’s our base case? [Sometimes “cases”]
• n=0; fact(0) = 1

• What’s the recursive relationship?
• n>0; fact(n) = n • fact(n-1)

Fibonacci Numbers

• 1, 1, 2, 3, 5, 8, 13, ...
• Definition
• F0 = 1, F1 = 1
• For n > 1, Fn = Fn-1 + Fn-2

• Inherently recursive!

• It appears almost everywhere
• Growth: Populations, plant features
• Architecture

• Data Structures!

fib.java
public class fib{

// pre: n is non-negative
public static int fib(int n) {

if (n==0 || n == 1) {
return 1;

}
else {

return fib(n – 1) + fib(n – 2);
}

}

public static void main(String args[]) {
System.out.println(fib(Integer.valueOf(args[0]).intValue()));

}

}

Demo: RecursiveMethods.java….
Question: Why is fib so slow?!

Towers of Hanoi

• Demo
• Base case:
• One disk: Move from start to finish

• Recursive case (n disks):
• Move smallest n-1 disks from start to temp

• Move bottom disk from start to finish
• Move smallest n-1 disks from temp to finish

• Let’s try to write it....

Recursion Tradeoffs

• Advantages
• Often easier to construct recursive solution
• Code is usually cleaner
• Some problems do not have obvious non-

recursive solutions

• Disadvantages
• Overhead of recursive calls
• Can use lots of memory (need to store state for

each recursive call until base case is reached)
• E.g. recursive fibonacci method

Alternate contains() for Vector
// Helper method: returns true if elt has index in range from..to
public boolean contains(E elt, int from, int to) {

if (from > to)
return false; // Base case: empty range

else
return elt.equals(elementData[from]) ||

contains(elt, from+1, to);
}

public boolean contains(E elt) {
return contains(elt, 0, size()-1); }

• What’s the time complexity of contains?
• O(to – from + 1) = O(n) (n is the portion of the array searched)
• Why?

• Bootstrapping argument! True for: to – from = 0, to – from = 1, …

• Let’s formalize this bootstrapping idea....

Mathematical Induction

• The mathematical cousin of recursion is
induction

• Induction is a proof technique
• Reflects the structure of the natural

numbers
• Use to simultaneously prove an infinite

number of theorems!

Mathematical Induction
• Example: Prove that for every n ≥ 0

𝑃" ∶ ∑%&'" 𝑖 = 0 + 1 + …+ 𝑛 =
"("/0)

2

• Proof by induction:

• Base case: Pn is true for n = 0 (just check it!)

• Induction step: If Pn is true for some n≥0, then
Pn+1 is true.

𝑃"/0: 0 + 1 + …+ 𝑛 + 𝑛 + 1 =
𝑛 + 1 𝑛 + 1 + 1

2
=
(𝑛 + 1)(𝑛 + 2)

2
Check: 0 + 1 + …+ 𝑛 + 𝑛 + 1 = " "/0

2
+ 𝑛 + 1 = ("/0)("/2)

2

• First equality holds by assumed truth of Pn!

Mathematical Induction

Principle of Mathematical Induction (Weak)
Let P(0), P(1), P(2), ... Be a sequence of statements,
each of which could be either true or false. Suppose
that

1. P(0) is true, and
2. For all n ≥ 0, if P(n) is true, then so is P(n+1).

Then all of the statements are true!

Note: Often Property 2 is stated as
2. For all n > 0, if P(n-1) is true, then so is P(n).

Apology: I do this a lot, as you’ll see on future slides!

Mathematical Induction

• Prove:

• Prove:
€

2i = 20 + 21 + 22 + ...+ 2n = 2n+1 −1
i= 0

n

∑

€

03 +13 + ...+ n3 = (0 +1+ ...+ n)2

Proof:

€

03 +13 + ...+ n3 = (0 +1+ ...+ n)2

(03 + 13 + ...n3) = (03 + 13 + ... + (n� 1)3) + n3

= (0 + 1 + ... + (n� 1))2 + n3

=
�

n(n� 1)
2

⇥2

+ n3

= n2

�
(n� 1)2 + 4n

4

⇥

= n2

�
n2 + 2n + 1

4

⇥

= n2

�
(n + 1)2

4

⇥

=
�

n(n + 1)
2

⇥2

= (0 + 1 + ... + n)2 19

Induction☞

Note: I’m doing the n-1 à n version

What about Recursion?

• What does induction have to do with recursion?
• Same form!

• Base case

• Inductive case that uses simpler form of problem

• Example: factorial
• Prove that fact(n) requires n multiplications

• Base case: n = 0 returns 1, 0 multiplications
• Assume true for all k<n, so fact(k) requires k multiplications.

• fact(n) performs one multiplication (n*fact(n-1)). We know that
fact(n-1) requires n-1 multiplications. 1+n-1 = n, therefore fact(n)
requires n multiplications.

Counting Method Calls

• Example: Fibonacci
• Prove that fib(n) makes at least fib(n) calls to fib()

• Base cases: n = 0: 1 call; n = 1; 1 call

• Assume that for some n ≥ 2, fib(n-1) makes at least n-1 calls to fib()
and fib(n-2) makes at least fib(n-2) calls to fib().

• Claim: Then fib(n) makes at least fib(n) calls to fib()
– 1 initial call: fib(n)
– By induction: At least fib(n-1) calls for fib(n-1)
– And as least fib(n-2) calls for fib(n-2)
– Total: 1 + fib(n-1) + fib(n-2) > fib(n-1) + fib(n-2) = fib(n) calls

• Note: Need two base cases!
• One can show by induction that for n > 10: fib(n) > (1.5)n

• Thus the number of calls grows exponentially!
• We can visualize this with a method call graph….

Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)
Let P0, P1, P2, ... Be a sequence of statements, each
of which could be either true or false. Suppose that

1. P0 and P1 are true, and

2. For all n ≥ 2, if Pn-1 and Pn-2 are true, then so is Pn.

Then all of the statements are true!
Other versions:

• Can have k > 2 base cases
• Doesn’t need to start at 0

Example: Binary Search

• Given an array a[] of positive integers in increasing
order, and an integer x, find location of x in a[].
• Take “indexOf” approach: return -1 if x is not in a[]

protected static int recBinarySearch(int a[], int value,
int low, int high) {

if (low > high) return -1;
else {

int mid = (low + high) / 2; //find midpoint
if (a[mid] == value) return mid; //first comparison

//second comparison
else if (a[mid] < value) //search upper half
return recBinarySearch(a, value, mid + 1, high);
else //search lower half

return recBinarySearch(a, value, low, mid - 1);
}

Binary Search takes O(log n) Time

Can we use induction to prove this?
• Claim: If n = high - low + 1, then recBinSearch

performs at most c (1+ log n) operations, where c is
twice the number of statements in recBinSearch

• Base case: n = 1: Then low = high so only c
statements execute (method runs twice) and c ≤
c(1+log 1)

• Assume that claim holds for some n ≥ 1, does it hold
for n+1? [Note: n+1 > 1, so low < high]

• Problem: Recursive call is not on n : it’s on n/2.

• Solution: We need a better version of the PMI….

Mathematical Induction

Principle of Mathematical Induction (Strong)
Let P(0), P(1), P(2), ... Be a sequence of statements,
each of which could be either true or false. Suppose
that, for some k ≥ 0

1. P(0), P(1), ... , P(k) are true, and
2. For every n ≥ k, if P(1), P(2), ... , P(n) are true, then so

is P(n+1).

Then all of the statements are true!

Binary Search takes O(log n) Time

Try again now:

• Assume that for some n ≥ 1, the claim holds for all
k ≥ n, does claim hold for n+1?

• Yes! Either
• x = a[mid], so a constant number of operations are

performed, or

• RecBinSearch is called on a sub-array of size n/2, and by
induction, at most c(1 + log (n/2)) operations are
performed.
• This gives a total of at most c + c(1 + log(n/2)) = c + c(log(2) +

log(n/2)) = c + c(log n) = c(1 + log n) statements

Wait…what???
(think about this as you go to sleep)
• Prove: All horses are the same color.
• Base case: n = 1. Clear

• Induction (n>1): Assume we have a set X of n
horses. Let x and y be two of the horses. X – {x} is
a set of n-1 horses, so (by induction) they are all the
same color. Similarly, all horses in X – {y} are the
same color. Now pick z in X, z ≠ x,y. Then z is in
X-{x} and z is in X-{y}, so all all horses are the same
color (as z)!

• Question: What went wrong?

