
CSCI 136
Data Structures &

Advanced Programming

Lecture 6
Fall 2019

Instructors: Bill & Sam

Last Time

• Finished Java overview/review
• Introduction to Vectors
• Example: Word Frequencies
• Vector instance variable and method declarations

• First details of implementation

Today’s Outline
From Previous Lecture Slides
• Vector Implementation
• Miscellany: Wrappers
• Lab 2 Design and Strategies
Today’s Slides
• Generic Data Types
• Condition Checking
• Pre- and post-conditions, Assertions

• Measuring Program Resource Use

Recall: Vectors

• Vectors are collections of Objects
• Methods include:

• add(Object o), remove(Object o)
• contains(Object o)
• indexOf(Object o)
• get(int index), set(int index, Object o)
• remove(int index)
• add(int index, Object o)
• size(), isEmpty()

• Remove methods preserve order, close “gap”

Using Generic (Parameterized) Types
• What limitations are associated with casting Objects

as they are added and removed from Associations?
• Errors cannot be detected by compiler
• Must rely on runtime checks

• Instead of casting Objects, Java supports using generic
or parameterized data types (Read Ch 4)

• Instead of:
Association a = new Association(“Bill”,(Integer) 97);
Integer grade = (Integer) a.getValue(); //Cast to Integer

• Use:
Association<String, Integer> a =

new Association<String, Integer>(”Bill”, (Integer) 97);
Integer grade = a.getValue(); //no cast!

Generic Association<K,V> Class
class Association<K,V> {

protected K theKey;
protected V theValue;

//pre: key != null
public Association (K key, V value) {

Assert.pre (key != null, “Null key”);
theKey = key;
theValue = value;

}

public K getKey() {return theKey;}
public V getValue() {return theValue;}
public V setValue(V value) {

V old = theValue;
theValue = value;
return old;

}
}

Making Vector Generic

• Structure5 provides a generic version of Vector
• And of all of the data structures in the structure package
• Instead of:

Vector v = new Vector(); //Vector of Objects
String word = (String)v.get(index); //Cast to String

• Use:
Vector<String> v = new Vector<String>(); //Vector of Strings
String word = v.get(index); //no cast!

• Or:
Vector<Association<String, Integer>> v =
new Vector<Association<String, Integer>>();

int count = v.get(index).getValue(); //no cast!

• See GenWordFreq.java…

(Look at WordFreq.java with gen)

Class Vector<E>
public class Vector<E> {
private Object[] elementData; // Underlying array
protected int elementCount; // Number of elts in Vector
protected final static int defaultCapacity;
protected int capacityIncrement; // How much to grow by
protected E initialValue; // A default elt value
}

• Why (still!) Object[]?
• Java restriction: Can’t use a type variable for an array

declaration, only a concrete type

Basic Vector<E> Methods
public class Vector<E> {
public Vector() // Make a small Vector
public Vector(int initCap) // Make Vector of given capacity
public void add(E elt) // Add elt to (high) end of Vector
public void add(int i, E elt) // Add elt at position i
public E remove(E elt) // Remove (and return) elt
public E remove(int i) // Remove (and return) elt at pos i
public int capacity() // Return capacity
public int size() // Return current size
public boolean isEmpty() // Is size == 0?
public boolean contains(E elt) // Is elt in Vector?
public E get(int i) // Return elt at position i
public E set(int i, E elt) // Change value at position i
public int indexOf(E elt) // Return earliest position of elt
}

Lab 2 Preview

• Three classes:
• FrequencyList.java

• Table.java

• WordGen.java

• Two Vectors of Associations
• toString() in Table and FrequencyList for debugging

• What are the key stages of execution?
• Test code thoroughly before moving on to next stage

• Use GenWordFreq as example

Lab 2: Core Tasks

• FreqencyList
• A Vector of Associations of String and Integer
• Add a letter

• Is it a new letter or not?
• Use indexOf from Vector class

• Pick a random letter based on frequencies
• Let total = sum of frequencies in FL
• generate random int r in range [0…total]
• Find smallest k s.t. r <= sum of first k frequencies

Lab 2: Core Tasks
• Table
• A Vector of Associations of String and

FrequencyList
• Add a letter to a k-gram

• Is it a new k-gram or not?

• Pick a random letter given a k-gram
• Find the k-gram then ask its FrequencyList to pick

• WordGen

• Convert input into (very long) String
• Use a StringBuffer---see handout

Pre and Post Conditions

• Recall charAt(int index) in Java String class
• What are the pre-conditions for charAt?

• 0 <= index < length()

• What are the post-conditions?
• Method returns char at position index in string

• We put pre and post conditions in comments above
most methods

/* pre: 0 ≤ index < length
* post: returns char at position index
*/
public char charAt(int index) { … }

Pre and Post Conditions

• Pre and post conditions “form a contract”
• Post-condition is guaranteed if method is

called when pre-condition is true
• Examples:

• s.charAt(s.length() - 1): index < length, so valid
• s.charAt(s.length() + 1): index > length, not valid

• These conditions document requirements that
user of method should satisfy

• But, as comments, they are not enforced

Other Examples

• Other places pre and post conditions are useful

// Pre: other is of type Card

// Post: Returns true if suits and ranks match

public boolean equals(Object other) {

Card oc = (Card) other;

return this.getRank() == oc.getRank() &&

this.getSuit() == oc.getSuit();

}

Assert Class

• Pre- and post-condition comments are
important for documenting code.

• BUT: It would be even better in some cases
that a pre-condition was violated.

• Program could catch error and gracefully halt
• The Assert class (in structure5 package)

allows us to programmatically check for pre-
and post-conditions

Assert Class

The Assert class contains the methods
public static void pre(boolean test, String message);

public static void post(boolean test, String message);

public static void condition(boolean test, String message);

public static void fail(String message);

If the boolean test is NOT satisfied, an exception is raised,
the message is printed and the program halts

Assert Examples

The Vector class uses Assert in many places
// Pre: initialCapacity >= 0
public Vector(int initialCapacity) {

Assert.pre(initialCapacity >= 0,"Capacity
must not be negative");

// Pre: 0 <= index && index < size()
public E elementAt(int index) {

Assert.pre(0 <= index && index < size(),"index
is within bounds");

General Rules about Assert

1. State pre/post conditions in comments
2. Check conditions in code using “Assert”
3. Use Fail in unexpected cases (such as the

default block of a switch statement)

• Any questions?
• You should start using Assertions in Lab 2

The Java assert keyword

• An alternative to Duane’s Assert class
• Added in Java 1.4
• Two variants

• assert boolean_expression
• Throws an AssertionError if the expression is false

• assert boolean_expression : other_expression
• In addition, prints value of other_expression\

Measuring Computational Cost

Consider these two code fragments…
for (int i=0; i < arr.length; i++)

if (arr[i] == x) return “Found it!”;

…and…

for (int i=0; i < arr.length; i++)

for (int j=0; j < arr.length; j++)

if(i !=j && arr[i] == arr[j]) return ”Match!”;

How long does it take to execute each block?
21

Measuring Computational Cost

• How can we measure the amount of work
needed by a computation?
• Absolute clock time

• Problems?
– Different machines have different clocks

– Too much other stuff happening (network, OS, etc)

– Not consistent. Need lots of tests to predict
future behavior

22

Measuring Computational Cost

• Counting computations
• Count all computational steps?
• Count how many “expensive” operations were

performed?
• Count number of times “x” happens?

• For a specific event or action “x”
• i.e., How many times a certain variable changes

• Question: How accurate do we need to be?
• 64 vs 65? 100 vs 105? Does it really matter??

23

An Example
// Pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0 // A wild guess
for(int i = 1; i < arr.length; i++)

if (arr[maxPos] < arr[i]) maxPos = i;
return maxPos;

}

• Can we count steps exactly?
• ”if” makes it hard

• Idea: Overcount: assume “if” block always runs
• Overcounting gives upper bound on run time
• Can also undercount for lower bound
• Overcount: 4(n-1) + 4; undercount: 3(n-1) + 4

Measuring Computational Cost

• Rather than keeping exact counts, we want to
know the order of magnitude of occurrences
• 60 vs 600 vs 6000, not 65 vs 68

• n, not 4(n-1) + 4

• We want to make comparisons without
looking at details and without running tests

• Avoid using specific numbers or values
• Look for overall trends

25

Measuring Computational Cost

• How does algorithm scale with problem size?
• E.g.: If I double the size of the problem instance, how

much longer will it take to solve:
• Find maximum: n – 1 à (2n) – 1 (≈ twice as long)
• Bubble sort: n(n-1)/2 à 2n(2n – 1)/2 (≈ 4 times as long)
• Subset sum: 2n-1 à 22n-1 (2n times as long!!!)
• Etc.

• We will also measure amount of space used by an
algorithm using the same ideas….

26

Function Growth

Consider the following functions, for x ≥ 1
• f(x) = 1
• g(x) = log2(x) // Reminder: if x=2^n, log2(x) = n

• h(x) = x
• m(x) = x log2(x)
• n(x) = x2

• p(x) = x3

• r(x) = 2x

27

Function Growth

1

log2(x)

x

x log2(x)

x2

2x

2 4 6 8 10

-20

20

40

60

Function Growth & Big-O

• Rule of thumb: ignore multiplicative constants
• Examples:
• Treat n and n/2 as same order of magnitude
• n2/1000, 2n2, and 1000n2 are “pretty much” just n2

• a0nk + a1nk-1 + a2nk-2 + … ak is roughly nk

• The key is to find the most significant or
dominant term

• Ex: limx→∞ (3x4 -10x3 -1)/x4 = 3 (Why?)
• So 3x4 -10x3 -1 grows “like” x4

29

Asymptotic Bounds (Big-O Analysis)

• A function f(n) is O(g(n)) if and only if there
exist positive constants c and n0 such that

|f(n)| ≤ c· g(n) for all n ³ n0

• c· g is “at least as big as” f for large n
• Up to a multaplicative constant c!

• Example:
• f(n) = n2/2 is O(n2)
• f(n) = 1000n3 is O(n3)

• f(n) = n/2 is O(n)
30

Determining “Best” Upper Bounds

• We typically want the most conservative upper bound
when we estimate running time
• And among those, the simplest

• Example: Let f(n) = 3n2

• f(n) is O(n2)
• f(n) is O(n3)
• f(n) is O(2n) (see next slide)
• f(n) is NOT O(n) (!!)

• “Best” upper bound is O(n2)
• We care about c and n0 in practice, but focus on size

of g when designing algorithms and data structures
31

What’s n0? Messy Functions

• Example: Let f(n) = 3n2 - 4n +1. f(n) is
O(n2)
• Well, 3n2 - 4n +1 ≤ 3n2 +1 ≤ 4n2, for n ≥ I
• So, for c = 4 and n0 = 1, we satisfy Big-O definition

• Example: Let f(n) = nk, for any fixed k ≥ 1. f(n) is
O(2n)
• Harder to show: Is nk ≤ c 2n for some c > 0 and large enough n?
• It is if and only if log2(nk) ≤ log2(2n), that is, iff k log2(n) ≤ n.
• That is iff k ≤ n/log2(n). But n/log2(n) à∞ as n à ∞
• This implies that for some n0 on n/log2(n) ≥ k if n ≥ n0
• Thus n ≥ k log2(n) for n ≥ n0 and so 2n ≥ nk

32

Input-dependent Running Times
• Algorithms may have different running times for

different input values
• Best case (typically not useful)

• BubbleSort already sorted array: O(n)
• Find item in first place that we look: O(1)

• Worst case (generally useful, sometimes misleading)
• Don’t find item in list: O(n)
• BubbleSort array that’s in reverse order: O(n2)

• Average case (useful, but often hard to compute)
• Linear search O(n)
• QuickSort random array O(n log n) ß We’ll sort soon

33

Vector Operations : Worst-Case
For n = Vector size (not capacity!):
• O(1): size(), capacity(), isEmpty(), get(i), set(i),

firstElement(), lastElement()
• O(n): indexOf(), contains(), remove(elt), remove(i)
• What about add methods?

• If Vector doesn’t need to grow
• add(elt) is O(1) but add(elt, i) is O(n)

• Otherwise, depends on ensureCapacity() time
• Time to compute newLength : O(log2(n))
• Time to copy array: O(n)
• O(log2(n)) + O(n) is O(n)

34

Vector: Add Method Complexity

35

Suppose we grow the Vector’s array by a fixed abount d.
How long does it take to add n items to an empty
Vector?
• The array will be copied each time its capacity needs

to exceed a multiple of d
• At sized 0, d, 2d, …, n/d

• Copying an array of size kd takes ckd steps for some
constant c, giving a total of

Vector: Add Method Complexity
Suppose we want to grow the Vector’s array by doubling.
How long does it take to add n items to an empty Vector?
• The array will be copied each time it’s capacity needs to

exceed a power of 2.
• At sizes 0, 1, 2, 4, 8, …, 2log

2
n

• Copying an array of size 2k takes c2k steps for some
constant c, giving a total of:

36

Common Complexities
For n = measure of problem size:
• O(1): constant time and space
• O(log n): divide and conquer algorithms, binary search
• O(n): linear dependence, simple list lookup
• O(n log n): divide and conquer sorting algorithms
• O(n2): matrix addition, selection sort
• O(n3): matrix multiplication
• O(n12): Original AKS primality test for n-bit integers
• O(2n): subset sum, graph 3-coloring, satisfiability, ...
• O(n!): traveling salesman problem (in fact O(n22n))

37

