
CSCI 136
Data Structures &

Advanced Programming

Lecture 4
Fall 2019

Instructors: Bill & Sam

Last Time

• Control structures
• Branching: if – else, switch, break, continue

• Looping: while, do – while, for, for – each

• import
• static
• Strings and String methods (intro)

2

Today’s Outline
• Object oriented programming Basics (OOP)

• More on Class Types

• Music Catalog: A multi-class example

• Using: Associations

• Technique: Randomizing an array
• Miscellaneous Java
• Static variables and methods
• Memory management

• Access control: public, protected, private 3

4

Object-Oriented Programming

• Objects are building blocks of Java software

• Programs involve collections of objects
• Cooperate to complete tasks
• Represent “state” of the program

• Communicate by sending messages to each other
• Through method invocation

5

Object-Oriented Programming
• Objects can model:
• Physical items - Dice, board, dictionary
• Concepts - Date, time, words, relationships
• Processes - Sort, search, simulate

• Objects contain:
• State (instance variables)

• Attributes, relationships to other objects, components
– Letter value, grid of letters, number of words

• Functionality (methods)
• Accessor and mutator methods

– addWord, lookupWord, removeWord

6

Object Support in Java
• Java supports the creation of programmer-

defined types called class types
• A class declaration defines data components

and functionality of a type of object
• Data components: instance variable (field)

declarations
• Functionality: method declarations
• Constructor(s): special method(s) describing the

steps needed to create an object (instance) of this
class type

7

A Simple Class
Premise: Define a type that stores information
about a student: name, age, and a single grade.
Declare a Java class called Student with data
components (fields/instance variables)

String name;
int age;
char grade;

And methods for accessing/modifying fields
• getName, getAge, getGrade
• setAge, setGrade
Declare a constructor, also called Student

public class Student {
// instance variables
private int age;
private String name;
private char grade;

// A constructor
public Student(int theAge, String theName,

char theGrade) {
age = theAge;
name = theName;
grade = theGrade;

}

// Methods for accessing/modifying objects
// ...see next slide...

8

public int getAge() {return age;}

public String getName() {return name;}

public char getGrade() {return grade;}

public void setAge(int newAge) {age = newAge;}

public void setGrade(char grade) {
this.grade = grade;

}
} // end of class declaration

9

Testing the Student Class
public class TestStudent {

public static void main(String[] args) {
Student a = new Student(18, "Patti Smith", 'A');
Student b = new Student(20, "Joan Jett", 'B');
// Nice printing
System.out.println(a.getName() + ", " +

a.getAge() + ", " + a.getGrade());
System.out.println(b.getName() + ", " +

b.getAge() + ", " + b.getGrade());
// Tacky printing
System.out.println(a);
System.out.println(b);

}
}

10

Worth Noting

• We can create as many student objects as we
need, including arrays of Students

Student[] class = new Student[3];
class[0] = new Student(18, "Patti Smith", 'A');
class[1] = new Student(20, "Joan Jett", 'B');
class[2] = new Student(20, "David Bowie", 'A');

• Fields are private: only accessible in Student class
• Methods are public: accessible to other classes

• Some methods return values, others do not
• public String getName();
• public void setAge(int theAge); 11

A Programming Principle

Use constructors to initialize the state of an object,
nothing more.

• State: instance variables
• Usually constructors are short, simple methods
• More complex constructors will typically use

helper methods or other constructors

• See Student2 example

12

Access Modifiers

13

• public and private are called access modifiers
• They control access of other classes to instance variables and

methods of a given class
• public : Accessible to all other classes
• private : Accessible only to the class declaring it

• There are two other levels of access that we’ll
see later

• Data-Hiding (encapsulation) Principle
• Make instance variables private
• Use public methods to access/modify object data
• Use private methods otherwise

public class Student {
// instance variables
private int age;
private String name;
private char grade;

// A constructor
public Student(int age, String name,

char grade) {
// What would age, name, grade
// refer to here...?

}

14

More Gotchas

public class Student {
// instance variables
private int age;
private String name;
private char grade;

// A constructor
public Student(int age, String name,

char grade) {
this.age = age;
this.name = name;
this.grade = grade;

}
15

Can Use This

‘Objectifying’ Nim

Goal: Allow multiple ‘Nim’ instances (objects)
• Supports playing simultaneous games
• Allow each game to have its own state
How?
• Delete ‘static’ from data declarations

• Except for constants minPileSize, maxPileSize
• They have same (class-wide) value for all Nim objects
• This is a subjective choice to illustrate a point

• Delete ‘static’ from methods that act on single Nim
instance
• Every method except main

• Add a constructor method to initialize new Nim instance
• In fact, for convenience, add 2 constructors

16

String in Java Is a Class Type

• Java provides special support for String objects
• String literals: “Bob was here!”, “-11.3”, “A”, “”

• If a class provides a method with signature
public String toString()

Java will automatically use that method to produce a
String representation of an object of that class type.

• For example
System.out.println(aStudent);

would use the toString method of Student to
produce a String to pass to the println method

Pro Tip: Always provide a toString method!
17

Nim3 : Nim with toString()

Replace games[i].displayBoard() with
System.out.println(games[i])

18

public String toString() {
String result = ""; // Set to empty string

for(int i = 0; i < board.length; i++) {
result += i + ":";

// Display a pile
for(int j=0; j < board[i]; j++)

result += " O";

result += "\n"; // Add new-line
}
return result;

}

String methods in Java

• Useful methods (also check String javadoc page)
• indexOf(string) : int
• indexOf(string, startIndex) : int
• substring(fromPos, toPos) : String
• substring(fromPos) : String
• charAt(int index) : char
• equals(other) : bool ß Always use this!
• toLowerCase() : String
• toUpperCase() : String
• compareTo(string) : int
• length() : int
• startsWith(string) : bool

• Understand special cases!
19

Using Strings
• Application: Parsing an XML file of a CD collection

• XML = eXtensible Markup Language
• XML is used for many things
• Music track info:

<TRACK>
<NAME>Big Willie style</NAME>
<ARTIST>Will Smith</ARTIST>
<ALBUM>Big Willie style</ALBUM>
<GENRE>Pop Rap</GENRE>
<YEAR>1997</YEAR>

</TRACK>

• How can we find and print just the track names?
• See TrackTitles.java
• java TrackTitles < trackList.xml

20

Catalog: An Extended Example

• Design a program to manage a collection of
music tracks, supporting
• Track objects
• Collections of tracks (playlist)
• Collections of playlists (music catalog)
• Importing of track data from a .XML file

• Goals
• Better understand basic OOP concepts in Java
• Foreshadow concepts to come in future lectures

• But first, we’ll need a tool: Associations
21

Associations

• Word ® Definition
• Account number ® Balance
• Student name ® Grades
• Google:
• URL ® page.html
• page.html ® {a.html, b.html, …} (links in page)
• word ® {a.html, d.html, …} (pages with word)

• In general:
• Key ® Value

Association Class

• We want to capture the “key ® value”
relationship in a general class that we can use
everywhere

• What type do we use for key and value
instance variables?
• Object!

• We can treat any thing as an Object since all
classes inherently extend Object class in Java…

Association Class

Association Methods
• public Association (Object key, Object value)
• public Object getKey() : return key
• public Object getValue() : return value
• public Object setValue(Object v)
• public boolean equals(Object other)
• Return true if keys match; return false otherwise

Example: A Simple Dictionary
class Dictionary {

// A method to print the defs of words from command line.

public static void main(String args[]) {
Dictionary dict = new Dictionary();
System.out.println();

for (int i = 0; i < args.length; i++) {
String answer = dict.lookup(args[i]);

if (!answer.equals(""))
System.out.println(args[i] + ": " + answer);

else
System.out.println("The word '" + args[i] +
"' was not found.");

}
System.out.println();

}

// implementation continued on next slides…

Example: A Simple Dictionary
protected Association words[] = new Association[5];

public Dictionary() {
words[0] = new Association("perception",

"Awareness of an object of thought");

words[1] = new Association("person",
"An individual capable of moral agency");

words[2] = new Association("pessimism",
"Belief that things happen for the worst");

words[3] = new Association("philosophy",
"Literally, love of wisdom.");

words[4] = new Association("premise",
"A statement used to infer truth of others");

}

// implementation continued on next slide…

Example: A Simple Dictionary
// post: returns the definition of word, or "" if not found.

public String lookup(String word) {

// Note: If words array is not "full", this method would crash
// If a word wasn't found (Why?)

for (int i = 0; i < words.length; i++) {

Association a = words[i];

if (a.getKey().equals(word)) {
return (String)a.getValue();
// note the type-cast above to recover type

}
}
return "";

}

} // End of class declaration

Association Class
// Association is part of the structure package
class Association {

protected Object key;
protected Object value;

//pre: key != null
public Association (Object K, Object V) {

Assert.pre (K!=null, “Null key”);
key = K;
value = V;

}

public Object getKey() {return key;}
public Object getValue() {return value;}
public Object setValue(Object V) {

Object old = value;
value = V;
return old;

}
// Continued on next slide….

Association Class
public boolean equals(Object other) {

if (other instanceof Association) {
Association otherAssoc = (Association)other;
return getKey().equals(otherAssoc.getKey());

}
else return false;

}
}

• Note: The actual structure package code does NOT
do the instanceof check (but it should).

• Instead the method has a “pre-condition” comment
that says the other must be a non-null Association!
• We’ll return to the topic of pre- (and post-) conditions later

Catalog: Classes

• Track
• Store data about a single music track
• Allow access (not updating) to that data

• TrackList
• Store a set of tracks
• Allow access to ith track, add new tracks

• Catalog
• Store a set of named track lists
• Allow access to track list by name, add a track list,

add a track

• TrackParser : utilities to parse XML track file 30

Catalog: Class Diagram

31

Catalog: Class Diagram

32

Implementation Notes

• Track
• Object data is private, methods are public
• Use of “this” to disambiguate names
• Special methods: constructors and toString

• TrackList
• DEFAULT_SIZE

• final : a constant—value can’t be changed
• static : one copy of variable is shared among all Tracks

• Array capacity (length) not same as current size
• contains & toString need to use current size

• Contains uses a problematic equality test!
33

Class Object
• At the root of all class-based types is the type Object
• All class types implicitly extend class Object

• Student, Track, TrackList … extend Object
Object ob = new Track(); // legal!
Track c = new Object(); // NOT legal!

• Class Object defines some methods that all classes
should support, including
public String toString()
public boolean equals(Object other)

• But we usually override (redefine) these methods
• As we did with toString() in our previous examples
• Let’s override equals() for the Track class…. 34

Object Equality

• Suppose we have the following code:
Track t1 = new Track(“A song”, ”An Artist”, ”An Album”);
Track t2 = new Track(“A song”, ”An Artist”, ”An Album”);
if (t1 == t2) { System.out.println(“SAME”); }
else { System.out.println(“Not SAME”); }

• What is printed?
• How about:

Track t3 = t2;
if (t2 == t3) { System.out.println(“SAME”); }
else { System.out.println(“Not SAME”); }

• ‘==‘ tests whether 2 names refer to same object
• Each time we use “new” a new object is created

35

Equality

• What do we really want?
• Ideally, all fields should be the same
• But sometimes genre/year is missing, so skip them

• How?
if (t1.getTitle().equals(t2.getTitle()) &&

t1.getArtist().equals(t2.getArtist()) &&

t1.getAlbum().equals(t2.getAlbum())) {

System.out.println(“SAME”);
}

• This works, but is cumbersome…
• equals() to the rescue.... 36

equals()
• We use:

if (t1.equals(t2)) { … }

• We can define equals() for each CardXYZ class
public boolean equals(Object other) {

if (other instanceof Track) {
Track ot = (Track) other;
return getTitle().equals(ot.getTitle()) &&

getArtist().equals(ot.getArtist()) &&
getAlbum().equals(ot.getAlbum()) }

else
return false;

}

• Note: Must cast other to type Track

37

Implementation Notes
• Catalog
• Use an Association to pair name with TrackList

• Stores a pair of objects as a (key, value) pair
• Supports getKey() and getValue() methods
• But these methods return type Object

– Must cast the type back to actual type
– Use instance of method to check for correct type in equals()

• TrackParser
• Assumes one XML tag per line
• Minimal error-checking
• Uses private parseLine() method for modularity
• Uses switch statement on tag

38

Multi-Dimensional Arrays

• Syntax for 1-D array:
Card deck[] = new Card[52]; // array of 52 “nulls”

Card[] deck= new Card[52]; // same

• Syntax for 2-D array:
int [][] grades = new int[10][15];

String[][] deck = new String[4][13];
String[][] wordLists = new String[26][]

• Determine size of array?
deck.length; //not deck.length()!!

wordLists.length vs wordLists[3].length? 39

About “static” Variables
• Static variables are shared by all instances of class
• What would this print?

public class A {
static protected int x = 0;
public A() {

x++;
System.out.println(x);

}
public static void main(String args[]) {

A a1 = new A();
A a2 = new A();

}
}

• Since static variables are shared by all instances of A,
it prints 1 then 2. (Without static, it would print 1
then 1. 40

About “static” Methods
• Static methods are shared by all instances of class

• Can only access static variables and other static methods

public class A {
public A() { … }
public static int tryMe() { … }
public int doSomething() { … }

public static void main(String args[]) {
A a1 = new A();
int n = a1.doSomething();
A.doSomthing(); //WILL NOT COMPILE
A.tryMe();
a1.tryMe(); // LEGAL, BUT MISLEADING!
doSomething(); // WILL NOT COMPILE
tryMe(); // Ok

}
}

41

Access Levels

• public, private, and protected
variables/methods

• What’s the difference?
• public – accessible by all classes, packages,

subclasses, etc.
• protected – accessible by all objects in same class,

same package, and all subclasses
• private – only accessible by objects in same class

• Generally want to be as “strict” as possible

42

Access Modifiers

43

Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

none Y Y N N

private Y N N N

A package is a named collection of classes.
• Structure5 is Duane’s package of data structures
• Java.util is the package containing Random,

Scanner and other useful classes
• There’s a single “unnamed” package

Memory Management in Java

• Where do “old” objects go?
Track t = new Track(“Hey, Jude”, “The Beatles”, …);
…
t = new Track (“Blowin’ in the Wind”, “Bob Dylan”, …);

• What happens to Hey, Jude?
• Java has a garbage collector
• Runs periodically to “clean up” memory that had

been allocated but is no longer in use
• Automatically runs in background

• Not true for many other languages!
44

Variables and Memory

• Instance variables
• Upon declaration are given a default value
• Primitive types

• 0 for number types, false for Boolean, \u000 for char

• Class types and arrays: null

• Local variables
• Are NOT given a default when declared

• Method parameters
• Receive values from arguments in method call

45

Types and Memory

• Variables of primitive types
• Hold a value of primitive type

• Variables of class types
• Hold a reference to the location in memory where

the corresponding object is stored

• Variable of array type
• Holds a reference, like variables of class type

• Assignment statements
• For primitive types, copies the value
• For class/array types, copies the reference 46

Lecture Ends Here

47

