
CSCI 136
Data Structures &

Advanced Programming

Lecture 34
Fall 2019

2070567 & 82879

2

Announcements

• No Lab Today!
• Review Session
• Thursday, Dec. 12: 4:00-5:30 pm
• SSL 030a

• BYOQ

• Course Evaluations
• Blue Sheets: In class on Friday
• On-line form: On your own schedule

• Please fill them out!

3

Last Time

• Maps & Hashing

4

Today

• Hashing Wrap-up

5

Hashing in a Nutshell
• Store a value based on a key
• Assign values to “bins” based on keys
• When searching for object, go directly to

appropriate bin (and ignore the rest)
• If there are multiple objects associated with

bin, then search for the correct one
• Important Insight: Hashing works best when

objects are evenly distributed among bins

6

Implementing a HashTable

• How can we represent bins?
• Slots in array
• Storing in Vector is slower (and problematic)
• Initial size of array is typically a prime number

• How do we find a key’s bin number?
• We use a hash function that converts keys into

integers
• In Java, all Objects have public int hashCode()

• Hashing function is one way: key fingerprint

• Hashing function is deterministic

7

put contains

8

Implementing HashTable
• Store (Key, Value) pair as Association
• How do we add Associations to the array?

• array[o.hashCode() % array.length] = o; ?
• What’s "aaaaaa".hashCode() ?
• Use absolute value unless you’re sure o.hashCode() ≥ 0

• Collisions make life hard
• Two approaches
• Open Addressing

• Linear or Quadratic Probing

• Double Hashing

• External chaining

9

Open Addressing : Linear Probing
• Collision: A key hashes to a location occupied by

another key

• On collision, begin linear probing to find a slot
• Add k (for some k>0) to current index; repeat

• Insert data into first available slot

• Note: If k divides n, we can only access n/k slots
• So, either set k = 1 or choose n to be prime (or both)!

• This method leads to clustering
• Primary clustering: Keys with same hash value collide with

one another

• Secondary clustering: Keys with unequal hash values
collide with one another

10

put contains

11

First Attempt: put(K)
public V put (K key, V value) {

int bin = key.hashCode() % data.length;
while (true) {

Association<K,V> slot = (Association<K,V>) data[bin];
if (slot == null) {

data[bin] = new Association<K,V>(key,value);
return null;

}
if (slot.getKey().equals(key)) { // already exists!

V old = slot.getValue();
slot.setValue(value);
return old;

}
bin = (bin + 1) % data.length;

}
}

12

First Attempt: get(K)

public V get (K key) {
int bin = key.hashCode() % data.length;
while (true) {

Association<K,V> slot = (Association<K,V>) data[bin];
if (slot == null)

return null;

if (slot.getKey().equals(key))
return slot.getValue();

bin = (bin + 1) % data.length;
}

}

13

Reserving Empty Slots

• If a collision occurs at a given bin, move to subsequent bins
until an empty slot is available
• Specify easy hash function: length
• Initial array size = 7

• Add “algorithms” to hash table

• Add “data”

• Add “bit”

• What happens when we remove “algorithms”, and then
lookup “bit”?
• Need a “placeholder” for removed values…

14

Reserving Empty Slots

15

The HashAssociation Class

How can we mark an array entry as ’reserved’?
• A second array of ‘reserved’ flags?
• Pair each Association with a ‘reserved’ flag?

• Make a ‘reserved’ flag part of the Association?
The HashAssociation uses the third approach
• Adds a ‘reserved’ instance variable

• Adds ‘reserve’ and ’reserved’ method

16

Implementation Highlights
• The locate method returns

• The index to which key hashes if that slot is empty, or

• The index in which the key is stored if key is in table, or

• The index of the first empty (or reserved) location after
the index to which the key hashes

• Locate is used by, put, get, containsKey
• The expand method

• Creates a larger Vector
• Rehashes each element from original Vector to larger one

• The HashtableIterator
• Iterates in the order in which data is stored in Vector

• Question: Why doesn’t it use the Vector’s iterator?

17

Doubling Array

• Cannot just copy values
• Why?
• Hash values may change
• Example: suppose (key.hashCode() == 11)

• 11 % 8 = 3;

• 11 % 16 = 11;

• Result: must recompute all hash codes,
reinsert into new array

18

protected int locate(K key) {

int hash = Math.abs(key.hashCode() % data.size());
int reservedSlot = -1;
boolean foundReserved = false;
while (data.get(hash) != null) {

if (data.get(hash).reserved()) {
if (!foundReserved) {

reservedSlot = hash;
foundReserved = true;

}
}
else {

if (key.equals(data.get(hash).getKey()))
return hash;

}
hash = (1+hash)%data.size();

}
if (!foundReserved) return hash;
else return reservedSlot;

}

The Locate Method

19

Open Addressing : Quadratic Probing

• With linear probing, the ith probe for key k occurs at location
(h(k) + i) % arraySize (assuming h(k) is non-negative)

• With quadratic probing, the ith probe for key k occurs at
location (h(k) + i^2) % arraySize (starting with i = 0)

• Quadratic probing helps to avoid secondary (but not primary)
clustering.

• Quadratic probing may not always find an empty slot!
• Can have h(k) + i^2 = h(k) + j^2 % p for i ≠ j and i,j < p

• But as long as table is at most half-full, an empty slot will be found
• This can be shown with simple modular arithmetic assuming p is prime

20

Load Factor
• Need to keep track of how full the table is
• Why?
• What happens when array fills completely?

• Load factor is a measure of how full the hash
table is
• LF = (# elements) / (table size)

• When LF reaches some threshold, double size
of array
• For linear probing, typical threshold = 0.6
• For quadratic probing, typical threshold = 0.5

21

Open Addressing : Double Hashing

• With double hashing a second hashing function h’(k) is used to
determine the probe sequence of k if location h(k) is full

• The ith probe for key k occurs at location (h(k) + i*h’(k) %
arraySize (starting with i = 0)

• A good secondary hashing function needs to ensure that
• h’(k) ≠ 0
• h’(k) should not share any factors with arraySize (to ensure that all array locations can

be probed if needed.

22

Lecture 34 Ended Here

23

Open Addressing Limitations

• Downsides of open addressing?
• What if array is almost full?

• Loooong runs for every lookup…
• Array doubling or periodic table rehashing is needed

• How can we avoid these problems?
• Keep all values that hash to same bin in a
Structure
• Usually a SLL

• External chaining “chains” objects with the same
hash value together

24

External Chaining

• Instead of runs, we store a list in each bin

data[][][][][][][][]

(K,V)

(K,V)

(K,V)

(K,V)

(K,V)

(K,V) (K,V)

(K,V)

(K,V)

(K,V)

• get(), put(), and remove() only need to check
one slot’s list

• No placeholders!

25

Probing vs. Chaining
What is the performance of:
• put(K, V)

• LP: O(1 + run length)
• EC: O(1 + chain length)

• get(K)
• LP: O(1 + run length)

• EC: O(1 + chain length)

• remove(K)
• LP: O(1 + run length)

• EC: O(1 + chain length)

• How do we control cluster/chain length?

26

Good Hashing Functions

• Important point:
• All of this hinges on using “good” hash functions

that spread keys “evenly”

• Good hash functions
• Fast to compute
• Uniformly distribute keys

• Almost always have to test “goodness”
empirically

27

hashCode() rules

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()

28

Example : String Hash Functions

• What are some feasible hash functions for
Strings?
• First char ASCII value mapping

• 0-255 only
• Not uniform (some letters more popular than others)

• Sum of ASCII characters
• Not uniform - lots of small words

• smile, limes, miles, slime are all the same

29

Example Hash Functions

• String hash functions
• Weighted sum

• Small words get bigger codes
• Distributes keys better than non-weighted sum

• Let’s look at different weights…

30

s.charAt(i)S
n=s.length()

i = 0

Hash of all words in UNIX
spelling dictionary (997

buckets)

31

s.charAt(i) * 2iS
n

i = 0

32

s.charAt(i) * 256iS
This looks pretty good, but 256i is big…

n

i = 0

33

s.charAt(i) * 31iS
Java uses:n

i = 0

€

s.charAt(i) * 31(n− i−1)
i= 0

n

∑

34

Hashtables: O(1) operations?
• How long does it take to compute a String’s

hashCode?
• O(s.length())

• Given an object’s hash code, how long does it
take to find that object?
• O(run length) or O(chain length) PLUS cost of

.equals() method

• Conclusion: for a good hash function (fast,
uniformly distributed) and small load factor, we
say operations take O(1) time
• But that’s not strictly true….

35

put get space

unsorted vector O(n) O(n) O(n)

unsorted list O(n) O(n) O(n)

sorted vector O(n) O(log n) O(n)

balanced BST O(log n) O(log n) O(n)

array indexed by key O(1)* O(1)* O(key range)

Summary

*PolitiFact Rating: not quite Pants on Fire

36

What Can We Say For Sure?!

For external chaining
• Assuming the hashing function is equally likely

to hash to any slot
Theorem: A search will take O(1 + m/n) time,
on average
• n is table size, m is number of keys stored
• True for both successful and unsuccessful

searches
• Based on expected chain length

37

What Can We Say For Sure?!

For open addressing
• Assuming that all probe sequences are equally

likely [which is unlikely!]
• Assuming load factor 𝛼 = m/n
Theorem: An unsuccessful search will perform,
on average, O(1 + 𝛼) probes

Theorem: A successful search will perform, on
average, O(

"
𝛼 log "

"&𝛼) probes

More probe sequences ⇒ better average case

38

Perfect Hashing

In certain cases, it is possible to design a hashing
scheme such that
• Computing the hash takes O(1) time
• There are no collisions
• Different keys always have different hash values

This is called a perfect hashing scheme

39

Perfect Hashing

If keyspace is smaller than array size

• Handcraft the hashing function
• Ex: Reserved words in programming languages

• Make array really big
• Ex: All ASCII strings of length at most 4

• Hash is 32 bit number

• Array of size 4.3 billion will suffice

