
CSCI 136
Data Structures &

Advanced Programming

Fall 2019
Lecture 33

2070567 & 82879

Administrative Details
Reminders
•No lab this week
•Final exam

• Monday, December 16 at 9:30 in TCL 123 (Wege)

• Covers everything, with strong emphasis on post-midterm
• Study guide, sample exam will be posted on handouts page

Topics Covered

• Vectors (and arrays)
• Complexity (big O)
• Recursion + Induction
• Searching
• Sorting
• Linked Lists (SLL & DLL)

• Stacks
• Queues
• Iterators
• Bitwise operations

• Comparables/Comparators
• OrderedStructures
• Binary Trees

• Priority Queues
• Heaps
• Binary Search Trees

• Graphs
• Maps/Hashtables

Last Time

• Graph applications (more in Ch 16)
• Dijkstra’s Algorithm for shortest paths

• Single source

• Prim’s algorithm for MCST

Today’s Outline

• Quick Dijkstra’s example
• Maps
• Revisit Naïve implementation from Lab 2
• structure5.Hashtable (finally)

• Hash functions
• “Load factor”

• Collisions and how to handle them

• You should also read Ch 15 for more info

Final Topic: Maps and Hashing

Map Interface

• Used in GraphList and GraphMatrix
• Also (essentially) used elsewhere
• Lab 2 (wordgen): Table - for each string seen in

the text, what is the FrequencyList of following
characters?

• Lab 6 (postscript): SymbolTable - for each stored
symbol, what did the user define as its value?

Map Interface

Methods for Map<K, V>
• int size() - returns number of entries in map
• boolean isEmpty() - true iff there are no entries
• boolean containsKey(K key) - true iff key exists in map
• boolean containsValue(V val) - true iff val exists at

least once in map
• V get(K key) - get value associated with key
• V put(K key, V val) - insert mapping from key to val,

returns value replaced (old value) or null
• V remove(K key) - remove mapping from key to val
• void clear() - remove all entries from map

Map Interface

Other methods for Map<K,V>:
•void putAll(Map<K,V> other) - puts all key-value pairs
from Map other in map
•Set<K> keySet() - return set of keys in map
•Set<Association<K,V>> entrySet() - return set of key-
value pairs from map
•Structure<V> valueSet() - return structure containing all
the values
•boolean equals() - used to compare two maps
•int hashCode() - returns hash code associated with data in
map (stay tuned…)

public class Dictionary {

public static void main(String args[]) {
Map<String, String> dict = new Hashtable<String, String>();
…
dict.put(word, def);
…
System.out.println("Def: " + dict.get(word));

}

}

Dictionary.java

What’s missing from the Map API that a BST provides?

successor(key), predecessor(key)

Maps do NOT preserve order!

Simple Implementation: MapList

• Uses a SinglyLinkedList of Associations as underlying
data structure
• Think back to Lab 2, but a List instead of a Vector

• How would we implement get(K key)?
• How would we implement put(K key, V val)?

MapList.java
public class MapList<K, V> implements Map<K, V>{

//instance variable to store all key-value pairs
SinglyLinkedList<Association<K,V>> data;

public V put (K key, V value) {
Association<K,V> temp =

new Association<K, V> (key, value);
// Association equals() just compares keys
Association<K,V> result = data.remove(temp);

data.addFirst(temp);
if (result == null)

return null;
else

return result.getValue();
}

}

Simple Map Implementation

• What is MapList’s running time for:
• containsKey(K key)?
• containsValue(V val)?

• Bottom line: not O(1)!

Search/Locate Revisited

• How long does it take to search for objects in
Vectors and Lists?
• O(n) on average

• How about in BSTs?
• O(log n)

• Can this be improved?
• Hash tables can locate objects in really quickly!

• (we will cover two reasons that O(1) performance is a fuzzy claim)

Example from Bailey

“We head to a local appliance store to pick up a new freezer. When we
arrive, the clerk asks us for the last two digits of our home telephone
number! Only then does the clerk ask for our last name. Armed with that
information, the clerk walks directly to a bin in a warehouse of hundreds
of appliances and comes back with the freezer in tow.”

• Thoughts?
•What is Key? What is Value?
•Are names evenly distributed?
•Are the last 2 phone digits evenly distributed?

Hashing in a Nutshell

• Assign objects to “bins” based on key
• When searching for object, go directly to

appropriate bin (and ignore the rest)
• If there are multiple objects in bin, then search

for the correct one
• Important Insight: Hashing works best when

objects are evenly distributed among bins
• Phone numbers are randomly assigned, last names

are not

Hashing in a Nutshell

• Phone numbers are randomly assigned, last names
are not

Implementing a HashTable

• How can we represent bins?
• Slots in array (for Associations)
• How do we find a key’s bin number?
• We use a hash function that converts keys into

integers
• In Java, all Objects have public int hashCode()

• Hashing function is one way: key fingerprint

• Hashing function is deterministic

• What if number is too big?
• Take modulo array size (% in Java)

hashCode()

• What properties do we want hashCode to
have so that it is useful to find the right bin?

• Should always give the same result for a given
object

• Should always give the same result for two
equal objects (meaning equals() is true)

• Should not (too often) give the same result
for two unequal objects

hashCode() rules

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()

What happens if a bin is full?

• Let’s say we store objects in an array
• We get unlucky – two are assigned to the

same slot

• What do we do?

Linear Probing

• If a collision occurs at a given bin, just move forward (linearly)
until an empty slot is available
• Specify easy hash function: length
• Initial array size = 7

• Add “algorithms” to hash table

• Add “data”

• Add “bit”

• Let’s implement put(key, val) and get(key)…

First Attempt: put(K)
public V put (K key, V value) {

int bin = key.hashCode() % data.length;
while (true) {

Association<K,V> slot = (Association<K,V>) data[bin];
if (slot == null) {

data[bin] = new Association<K,V>(key,value);
return null;

}
if (slot.getKey().equals(key)) { // already exists!

V old = slot.getValue();
slot.setValue(value);
return old;

}
bin = (bin + 1) % data.length;

}
}

First Attempt: get(K)

public V get (K key) {
int bin = key.hashCode() % data.length;
while (true) {

Association<K,V> slot = (Association<K,V>) data[bin];
if (slot == null)

return null;

if (slot.getKey().equals(key))
return slot.getValue();

bin = (bin + 1) % data.length;
}

}

put contains

Linear Probing

• If a collision occurs at a given bin, just move forward (linearly)
until an empty slot is available
• Specify easy hash function: length
• Initial array size = 7

• Add “algorithms” to hash table

• Add “data”

• Add “bit”

• Let’s implement put(key, val) and get(key)…

• What happens when we remove “moongleam”, and then
lookup “marigold”?
• Need a “placeholder” for removed values…

Reserving Empty Slots

Collisions & Clustering

• On collision, begin linear probing to find a slot
• Add k (for some k>0) to current index; repeat

• Insert data into first available slot

• Note: If k divides n, we can only access n/k slots
• So, either set k = 1 or choose n to be prime (or both)!

• This method leads to clustering
• Primary cluster: A cluster that forms around the original

hash location of a key
• Secondary cluster: A cluster that forms along the sequence

of rehashing locations of a key

Linear Probing
• NaiveProbing.java

• We specify a dummy hash function: index of first letter of word

• Initial array size = 8
• Add “air hockey” to hash table

• Add “doubles ping pong”

• Add “quidditch”

• What happens when we remove “air hockey”, and then
lookup “quidditch”?
• Our run was broken up!
• We need a “placeholder” for removed values to preserve runs…

• See Hashtable.java in structure5

Open Addressing : Quadratic Probing

• With linear probing, the ith probe for key k occurs at location
(h(k) + i) % arraySize (assuming h(k) is non-negative)

• With quadratic probing, the ith probe for key k occurs at
location (h(k) + i^2) % arraySize (starting with i = 0)

• Quadratic probing helps to avoid primary (but not secondary)
clustering.

• Quadratic probing may not always find an empty slot!
• But as long as table is at most half-full, an empty slot will be found

• This can be shown with simple modular arithmetic assuming p is prime

Load Factor
• Need to keep track of how full the table is
• Why?
• What happens when array fills completely?

• Load factor is a measure of how full the hash
table is
• LF = (# elements) / (table size)

• When LF reaches some threshold, double size
of array
• For linear probing, typical threshold = 0.6
• For quadratic probing, typical threshold = 0.5

Doubling Array

• Cannot just copy values
• Why?
• Hash values may change
• Example: suppose (key.hashCode() == 11)

• 11 % 8 = 3;

• 11 % 16 = 11;

• Result: must recompute all hash codes,
reinsert into new array

Open Addressing : Double Hashing

• With double hashing a second hashing function h’(k) is used to
determine the probe sequence of k if location h(k) is full

• The ith probe for key k occurs at location (h(k) + i*h’(k) %
arraySize (starting with i = 0)

• A good secondary hashing function needs to ensure that
• h’(k) ≠ 0
• h’(k) should not share any factors with arraySize (to ensure that all array locations can

be probed if needed.

Open Addressing Limitations

• Downsides of open addressing?
• What if array is almost full?

• Loooong runs for every lookup…
• Array doubling or periodic table rehashing is needed

• How can we avoid these problems?
• Keep all values that hash to same bin in a
Structure
• Usually a SLL

• External chaining “chains” objects with the same
hash value together

External Chaining

• Instead of runs, we store a list in each bin

data[][][][][][][][]

(K,V)

(K,V)

(K,V)

(K,V)

(K,V)

(K,V) (K,V)

(K,V)

(K,V)

(K,V)

• get(), put(), and remove() only need to check
one slot’s list

• No placeholders!

Probing vs. Chaining
What is the performance of:
• put(K, V)

• LP: O(1 + run length)
• EC: O(1 + chain length)

• get(K)
• LP: O(1 + run length)

• EC: O(1 + chain length)

• remove(K)
• LP: O(1 + run length)

• EC: O(1 + chain length)

• How do we control cluster/chain length?

Good Hashing Functions

• Important point:
• All of this hinges on using “good” hash functions

that spread keys “evenly”

• Good hash functions
• Fast to compute
• Uniformly distribute keys

• Almost always have to test “goodness”
empirically

Example Hash Functions

• What are some feasible hash functions for
Strings?
• First char ASCII value mapping

• 0-255 only
• Not uniform (some letters more popular than others)

• Sum of ASCII characters
• Not uniform - lots of small words

• smile, limes, miles, slime are all the same

Example Hash Functions

• String hash functions
• Weighted sum

• Small words get bigger codes
• Distributes keys better than non-weighted sum

• Let’s look at different weights…

s.charAt(i)S
n=s.length()

i = 0

Hash of all words in UNIX
spelling dictionary (997

buckets)

s.charAt(i) * 2iS
n

i = 0

s.charAt(i) * 256iS
This looks pretty good, but 256i is big…

n

i = 0

s.charAt(i) * 31iS
Java uses:n

i = 0

€

s.charAt(i) * 31(n− i−1)
i= 0

n

∑

Hashtables: O(1) operations?
• How long does it take to compute a String’s

hashCode?
• O(s.length())

• Given an object’s hash code, how long does it
take to find that object?
• O(run length) or O(chain length) times cost of

.equals() method

Hashtables: O(1) operations?
• If items are assigned to a random slot, and the

load factor is a constant, then:
• The run length is O(1) on average

• The chain length is O(1) on average

• Conclusion: for a good hash function (fast,
uniformly distributed) and a low load factor
(short runs/chains), we say hashtables are O(1)

put get space

unsorted vector O(n) O(n) O(n)

unsorted list O(n) O(n) O(n)

sorted vector O(n) O(log n) O(n)

balanced BST O(log n) O(log n) O(n)

array indexed by key O(1) O(1) O(key range)

Summary

