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Administrative Details
Reminders
•No lab this week
•Final exam

• Monday, December 16 at 9:30 in TCL 123 (Wege)

• Covers everything, with strong emphasis on post-midterm
• Study guide, sample exam will be posted on handouts page



Topics Covered

• Vectors (and arrays)
• Complexity (big O)
• Recursion + Induction
• Searching  
• Sorting
• Linked Lists (SLL & DLL)

• Stacks
• Queues  
• Iterators
• Bitwise operations

• Comparables/Comparators
• OrderedStructures
• Binary Trees

• Priority Queues
• Heaps               
• Binary Search Trees

• Graphs
• Maps/Hashtables



Last Time

• Graph applications (more in Ch 16)
• Dijkstra’s Algorithm for shortest paths

• Single source

• Prim’s algorithm for MCST



Today’s Outline

• Finish MCST Discussion
• Maps
• Revisit Naïve implementation from Lab 2
• structure5.Hashtable (finally)

• Hash functions
• “Load factor”

• Collisions and how to handle them

• You should also read Ch 15 for more info



A Famous Problem

• Given a connected, undirected graph G=(V,E) 
with non-negative edge weights, find a 
minimum-weight, connected, spanning 
subgraph of G.

• Note: Such a subgraph must be a spanning 
tree!

• Frequently, we refer to the edge weights as 
costs and so this problem becomes:

• Given an undirected graph G with edge costs, 
compute a minimum-cost spanning tree of G.



Minimum-Cost Spanning Trees



Minimum-Cost Spanning Trees



Finding a MCST

Suppose we just wanted to find a PCST (pretty 
cheap spanning tree), here’s one idea:

Grow It Greedily!
• Pick a vertex and find its cheapest incident 

edge. Now we have a (small) tree
• Repeatedly add the cheapest edge to the tree 

that keeps it a tree (connected, no cycles)
• This method is called Prim’s Algorithm

• How close might this get us to the MCST?



An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing 
algorithm always finds a minimum-cost spanning 
tree for any connected graph.

Contrast this with the greedy exam scheduling 
algorithm, which does not always find a minimum 
schedule (coloring)

Why does this work?



The Key

Def: Sets V1 and V2 form a partition of a set V if 

V1∪V2 = V and V1∩V2 = ∅
Lemma: Let G=(V,E) be a connected graph and 
let V1 and V2 be a partition of V. Every MCST of 
G contains a cheapest edge between V1 and V2

• Let e be a cheapest edge between V1 and V2

• Let T be a MCST of G.  If e ∉ T, then T∪ {e} 
contains a cycle C and e is an edge of C

• Some other edge e’ of C must also be between V1
and V2;  e is a cheapest edge, so w(e’) = w(e) [Why?]



Using The Key to Prove Prim

We’ll assume all edge costs are distinct
Otherwise proof is slightly less elegant

Let T be the tree produced by the greedy 
algorithm and suppose T* is a MCST for G
Claim: T = T*
Idea of Proof: Show that every edge added to 
the tree T by the greedy algorithm is in T*
Clearly the first edge added to T is in T*

Why? Use the key!



Using The Key

Now use induction!
• Suppose, for some k ≥ 1, that the first k edges 

added to T are in T*. These form a tree Tk

• Let V1 be the vertices of Tk and let V2 = V-V1

• Now, the greedy algorithm will add to T the 
cheapest edge e between V1 and V2

• But any MCST contains the (only!) cheapest 
edge between V1 and V2, so e is in T*

• Thus the first k+1 edges of T are in T*



Prim’s Algorithm
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A be the set of all edges between V1 and V2

while(|V1|<|V|)
let eßcheapest edge in A between V1 and V2

add e to MCST
let ußthe vertex of e in V2

move u from V2 to V1;
add to A all edges incident to u
// note: A now may have edges with both ends in V1



Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

while |V1|<|V|
add to A all edges incident to v
repeat

remove cheapest edge e from A
until e is an edge between V1 and V2

add e to MCST
let vßthe vertex of e in V2

move v from V2 to V1;



Prim’s Algorithm (Variant)
• Note: If G is not connected, A will eventually be 

empty even though |V1| < |V|

• We fix this by
• Replacing while(|V1| < |V|) with 

• repeat … until |V1| = |V| or  A = ∅
• Replacing until e is an edge between V1 and V2 with

• until A=∅ or e is an edge between V1 and V2

• Then Prim will find the MCST for the component 
containing v



Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

repeat // Assume G contains at least 2 vertices….
add to A all edges incident to v
repeat

remove cheapest edge e from A
until A is empty || e is an edge between V1 and V2

if e is an edge between V1 and V2

let vßthe vertex of e in V2

move v from V2 to V1;
until |V1|==|V| or |A| = 0



Implementing Prim’s Algorithm

• We’ll “build” the MCST by marking its edges 
as “visited” in G

• We’ll “build” V1 by marking its vertices visited
• How should we represent A?
• What operations are important to A?

• Add edges

• Remove cheapest edge

• A priority queue!

• When we remove an edge from A, check to 
ensure it has one end in each of V1 and V2



ComparableEdge Class

• Values in a PriorityQueue need to implement 
Comparable

• We wrap edges of the PQ in a class called 
ComparableEdge
• It requires the label used by graph edges to be of 

a Comparable type



Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

repeat // Assume G contains at least 2 vertices….
add to A all edges incident to v
repeat

remove cheapest edge e from A
until A is empty || e is an edge between V1 and V2

if e is an edge between V1 and V2

let vßthe vertex of e in V2

move v from V2 to V1;
untill |V1|=|V| or |A| = 0



MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q =
new SkewHeap<ComparableEdge<String,Integer>>();

String v = null;        // current vertex                                  
Edge<String,Integer> e; // current edge                                    
boolean searching;      // still building tree
g.reset();              // clear visited flags                             

// select a node from the graph, if any                                    
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;
v = vi.next();



MCST: The Code

do {
// visit the vertex and add all outgoing edges
to the priority queue                         
g.visit(v);
Iterator<String> ai = g.neighbors(v);
while (ai.hasNext()) {

// turn it into outgoing edge                                      
e = g.getEdge(v,ai.next());
// add the edge to the queue                                       
q.add(new
ComparableEdge<String,Integer>(e));

}
...



MCST: The Code
searching = true;
while (searching && !q.isEmpty()) {

// grab next shortest edge 
e = q.remove();
// Is e between V1 and V2 (subtle code!!)
v = e.there(); // does e connect V1 to V2?
if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {

searching = false;
g.visitEdge(g.getEdge(e.here(),

e.there()));
}

}
} while (!searching);



Prim : Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of 

space

• Priority Queue O(|E|)
• Each edge takes up constant amount of space

• Every other object (including the neighbor 
iterator) uses a constant amount of space

• Result: O(|V| + |E|)
• Optimal in Big-O sense!



Prim : Time Complexity

Assume Map ops are O(1) time (not quite true!)
For each iteration of do ... while loop
• Add neighbors to queue: O( deg(v) log |E|)
• Iterator operations are O(1) [Why?]
• Adding an edge to the queue is O(log |E|)

• Find next edge: O(# edges checked * log |E|)
• Removing an edge from queue is O(log |E|) time
• All other operations are O(1) time



Prim : Time Complexity

Over all iterations of do ... while loop
Step I: Add neighbors to queue:
• For each vertex, it’s O( deg(v) log |E|) time
• Adding over all vertices gives

• which is O(|E| log |E|) = O(|E| log |V|)
• |E| ≤|V|2, so log |E| ≤ log |V|2 = 2 log |V| = O(log |V|)

deg(v)log | E |
v∈V∑ = log | E | deg(v)

v∈V∑ = log | E | *2 | E |



Prim : Time Complexity

Over all iterations of do ... while loop
Step 2: Find next edge: O(# edges checked * log |E|)
• Each edge is checked at most once
• Adding over all edges gives O(|E| log |E|) again

Thus, overall time complexity (worst case) of Prim’s 
Algorithm is O(|E| log |V|)
• Typically written as O( m log n)

• Where m= |E| and n = |V|



Final Topic: Maps and Hashing



Map Interface

Methods for Map<K, V>
• int size() - returns number of entries in map
• boolean isEmpty() - true iff there are no entries
• boolean containsKey(K key) - true iff key exists in map
• boolean containsValue(V val) - true iff val exists at 

least once in map
• V get(K key) - get value associated with key
• V put(K key, V val) - insert mapping from key to val, 

returns value replaced (old value) or null
• V remove(K key) - remove mapping from key to val
• void clear() - remove all entries from map



Map Interface

Other methods for Map<K,V>:
•void putAll(Map<K,V> other) - puts all key-value pairs 
from Map other in map
•Set<K> keySet() - return set of keys in map
•Set<Association<K,V>> entrySet() - return set of key-
value pairs from map
•Structure<V> valueSet() - return set of values
•boolean equals() - used to compare two maps
•int hashCode() - returns hash code associated with data in 
map (stay tuned…)



public class Dictionary {

public static void main(String args[]) {
Map<String, String> dict = new Hashtable<String, String>();
…
dict.put(word, def);
…
System.out.println("Def: " + dict.get(word));

}

}

Dictionary.java

What’s missing from the Map API that a BST provides?

successor(key), predecessor(key)

Maps do NOT preserve order!



Simple Implementation: MapList

• Uses a SinglyLinkedList of Associations as underlying 
data structure
• Think back to Lab 2, but a List instead of a Vector

• How would we implement get(K key)?
• How would we implement put(K key, V val)?



MapList.java
public class MapList<K, V> implements Map<K, V>{

//instance variable to store all key-value pairs
SinglyLinkedList<Association<K,V>> data; 

public V put (K key, V value) {
Association<K,V> temp = 

new Association<K, V> (key, value);
// Association equals() just compares keys
Association<K,V> result = data.remove(temp);

data.addFirst(temp);
if (result == null)

return null;
else 

return result.getValue();
}

}



Simple Map Implementation

• What is MapList’s running time for:
• containsKey(K key)?
• containsValue(V val)?

• Bottom line: not O(1)!



Search/Locate Revisited

• How long does it take to search for objects in 
Vectors and Lists?
• O(n) on average

• How about in BSTs?
• O(log n)

• Can this be improved?
• Hash tables can locate objects in really quickly!

• (we will cover two reasons that O(1) performance is a fuzzy claim)



Example from Bailey

“We head to a local appliance store to pick up a new freezer. When we 
arrive, the clerk asks us for the last two digits of our home telephone 
number! Only then does the clerk ask for our last name. Armed with that 
information, the clerk walks directly to a bin in a warehouse of hundreds 
of appliances and comes back with the freezer in tow.”

• Thoughts?
•What is Key? What is Value?
•Are names evenly distributed?
•Are the last 2 phone digits evenly distributed?



Hashing in a Nutshell

• Assign objects to “bins” based on key
• When searching for object, go directly to 

appropriate bin (and ignore the rest)
• If there are multiple objects in bin, then search 

for the correct one
• Important Insight: Hashing works best when 

objects are evenly distributed among bins
• Phone numbers are randomly assigned, last names 

are not (there were a lot of Smiths in Smithsville!)



Implementing a HashTable

• How can we represent bins?
• Slots in array (or Vector, but arrays are faster)
• Initial size of array is a prime number

• How do we find a key’s bin number?
• We use a hash function that converts keys into 

integers 
• In Java, all Objects have public int hashCode()

• Hashing function is one way: key fingerprint

• Hashing function is deterministic



put contains


