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Last Time

• Fundamental Graph Algorithms
• Find Connected Components
• Find minimum length paths (edge count)

• Find minimum length paths (edge weights)
• Dijkstra’s Algorithm: What to compute
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Today’s Outline

• Dijkstra’s Algorithm
• How to compute it
• Correctness and Complexity

• Minimum-cost spanning subgraph: Prim
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Single Source Shortest Paths
Theorem (from previous lecture)

Let G=(V,E) be a directed graphs with non-negative 
edge weight function w: E →ℝ+∪ 0.

Then for any vertex v, G contains a subgraph Tv of 
G such that Tv is a tree consisting minimum-weight 
paths from v to every other vertex of G.

Dijkstra’s Algorithm: Efficiently construct such a 
tree Tv for each vertex v in G
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Dijkstra Shortest Paths Tree



10

The Right Kind of Greed

• A start: take shortest edge from start vertex s
• That must be a shortest path!
• And now we have a small tree of shortest paths

• What next?
• Design an algorithm by thinking inductively
• Suppose we have found a tree Tk that has shortest 

paths from s to the k-1 vertices “closest” to s
• What vertex would we want to add next?
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Finding the Best Vertex to Add to Tk

Not all edges are displayed

Question: Can we find the next closest vertex to s?
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What’s a Good Greedy Choice?

Idea: Pick edge e from 
u in Tk to v in G-Tk that 
minimizes the length 
of the tree path from s 
up to–and through–e

Now add v and e to Tk
to get tree Tk+1

Now Tk+1 is a tree consisting of shortest paths from s to the 
k vertices closest to s! Repeat until k = |V|
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Some Notation

• l(e) : length (weight) of edge e
• d(u,v) : distance from u to v

• Weight of minimum-weight path from u to v
• That is, length of minimum-length path….

• Note: d(,) defines a valid distance measure. That 
is

• d(u,u) = 0 for every vertex u
• d(u,v) = d(v,u) for every pair of vertices
• d(u,v) ≤ d(u,w) + d(w,v) for every triple of vertices

• So we’ll now use phrases like minimum-length 
and closest in our discussion



14

Dijkstra’s Insight

Theorem
Let G=(V,E) be a directed graphs with non-negative edge 
length function l: E →ℝ+∪ 0

Let s be a vertex of G and let Tk be a tree of shortest paths 
from so to the k closest vertices to s (including s).
Let u be a vertex u in G - Tk that minimizes d(s,v) + l(v,u) 
over all edges (u,v) for which v is in Tk and u is in G - Tk

Then, the tree Tk+1 = Tk ∪ (v,u) consists of shortest paths 
from s to the k+1 closest vertices to s

Let’s prove the induction step….
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Dijkstra’s Algorithm
Dijkstra(G, s)  // l(e) is the length of edge e
let Tß({s}, ∅)  and PQ be an empty priority queue
for each neighbor v of s, add edge (s,v) to PQ with priority l(e)
while T doesn’t have all vertices of G and PQ is non-empty

repeat
e ß PQ.removeMin()   // skip edges with both

until  PQ is empty or e=(u,v) for u∈T, v ∉ T  // ends in T
if  e=(u,v) for u∈T, v ∉ T

add e (and v) to T
for each neighbor w of v

add edge (v,w) to PQ with weight/key d(s,v) + l(v,w)
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Dijkstra: What Do We Return?

• As we find a new edge e = (v,w) to add to the 
tree of shortest paths, add it to a map.

• Precisely:
• Use the PQ association(X,Y) edgeInfo where

• X is d(s,v) + l(v,w)

• Y is the edge e=(v,w)

• Add the key/value pair (w, edgeInfo) to the map

• So the map entry with key w tells us the edge 
the shortest path used to get to w
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Dijkstra: Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of 

space

• Priority Queue O(|E|)
• Each edge takes up constant amount of space

• Are there any hidden space costs?
• Result: O(|V| + |E|)
• Optimal in Big-O sense!
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Dijkstra : Time Complexity

Assume Map ops are O(1) time
Across all iterations of outer while loop
• Edges are added to and removed from the 

priority queue
• But any edge is added (and removed) at most 

once!
• Total PQ operation cost is O(|E| log |E|) time

• Which is O(|E| log |V|) time

• All other operations take constant time

• Thus time complexity is O(|E| log |V|)
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Minimum-Cost Spanning Trees
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Minimum-Cost Spanning Trees
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Basic Graph Properties

• A subgraph of a graph G=(V, E) is a graph G’=(V’,E’) 
where
• V’ ⊆ V
• E’ ⊆ E, and

• If e ∈ E’ where e = {u,v}, then u, v ∈ V’

• Special Subgraphs
• If E’ contains every edge of E having both ends in V’, then 

G’ is called the subgraph of G induced by V’
• If V’ = V, then G’ is called a spanning subgraph of G
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Basic Graph Properties

• Recall: An undirected graph G=(V,E) is 
connected if for every pair u,v in V, there is a 
path from u to v (and so from v to u)

• The maximal sized connected subgraphs of G 
are called its connected components
• Note: They are induced subgraphs of G

• An undirected graph without cycles is a forest

• A connected forest is called a tree.
• Not to be confused with the data structure!
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Facts About Graphs

Thm: If G=(V,E) is a forest with |E| > 0, then G has at 
least one vertex v of degree 1 (a leaf)

• Hint: Consider a longest simple path in G…

Thm: If G=(V,E) is a tree then |E| = |V| - 1.
• Hint: Induction on v: delete a leaf

Thm: Every connected graph G=(V,E) contains a 
spanning subgraph G’=(V,E’) that is a tree

• That is, a spanning tree

Proof idea:
• If G is not a tree, then it contains a cycle C

• Removing an edge from C leaves G connected (why)

• Repeat until no more cycles remain
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A Famous Problem

• Given a connected, undirected graph G=(V,E) 
with non-negative edge weights, find a 
minimum-weight, connected, spanning 
subgraph of G.

• Note: Such a subgraph must be a spanning 
tree!

• Frequently, we refer to the edge weights as 
costs and so this problem becomes:

• Given an undirected graph G with edge costs, 
compute a minimum-cost spanning tree of G.
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Minimum-Cost Spanning Trees
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Minimum-Cost Spanning Trees
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Finding a MCST

Suppose we just wanted to find a PCST (pretty 
cheap spanning tree), here’s one idea:

Grow It Greedily!
• Pick a vertex and find its cheapest incident 

edge. Now we have a (small) tree
• Repeatedly add the cheapest edge to the tree 

that keeps it a tree (connected, no cycles)
• This method is called Prim’s Algorithm

• How close might this get us to the MCST?
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An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing 
algorithm always finds a minimum-cost spanning 
tree for any connected graph.

Contrast this with the greedy exam scheduling 
algorithm, which does not always find a minimum 
schedule (coloring)

Why does this work?
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The Key

Def: Sets V1 and V2 form a partition of a set V if 

V1∪V2 = V and V1∩V2 = ∅
Lemma: Let G=(V,E) be a connected graph and 
let V1 and V2 be a partition of V. Every MCST of 
G contains a cheapest edge between V1 and V2

• Let e be a cheapest edge between V1 and V2

• Let T be a MCST of G.  If e ∉ T, then T∪ {e} 
contains a cycle C and e is an edge of C

• Some other edge e’ of C must also be between V1
and V2;  e is a cheapest edge, so w(e’) = w(e) [Why?]



54

Using The Key to Prove Prim

We’ll assume all edge costs are distinct
Otherwise proof is slightly less elegant

Let T be the tree produced by the greedy 
algorithm and suppose T* is a MCST for G
Claim: T = T*
Idea of Proof: Show that every edge added to 
the tree T by the greedy algorithm is in T*
Clearly the first edge added to T is in T*

Why? Use the key!
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Using The Key

Now use induction!
• Suppose, for some k ≥ 1, that the first k edges 

added to T are in T*. These form a tree Tk

• Let V1 be the vertices of Tk and let V2 = V-V1

• Now, the greedy algorithm will add to T the 
cheapest edge e between V1 and V2

• But any MCST contains the (only!) cheapest 
edge between V1 and V2, so e is in T*

• Thus the first k+1 edges of T are in T*
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Prim’s Algorithm
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A be the set of all edges between V1 and V2

while(|V1|<|V|)
let eßcheapest edge in A between V1 and V2

add e to MCST
let ußthe vertex of e in V2

move u from V2 to V1;
add to A all edges incident to u
// note: A now may have edges with both ends in V1
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Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

while |V1|<|V|
add to A all edges incident to v
repeat

remove cheapest edge e from A
until e is an edge between V1 and V2

add e to MCST
let vßthe vertex of e in V2

move v from V2 to V1;
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Prim’s Algorithm (Variant)
• Note: If G is not connected, A will eventually be 

empty even though |V1| < |V|

• We fix this by
• Replacing while(|V1| < |V|) with while (|V1| < |V|) && A≠∅)

• Replacing until e is an edge between V1 and V2 with
• until A=∅ or e is an edge between V1 and V2

• Then Prim will find the MCST for the component 
containing v
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Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

while |V1|<|V| && |A| > 0
add to A all edges incident to v
repeat

remove cheapest edge e from A
until A is empty || e is an edge between V1 and V2

if e is an edge between V1 and V2

let vßthe vertex of e in V2

move v from V2 to V1;
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Implementing Prim’s Algorithm

• We’ll “build” the MCST by marking its edges 
as “visited” in G

• We’ll “build” V1 by marking its vertices visited
• How should we represent A?
• What operations are important to A?

• Add edges

• Remove cheapest edge

• A priority queue!

• When we remove an edge from A, check to 
ensure it has one end in each of V1 and V2
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ComparableEdge Class

• Values in a PriorityQueue need to implement 
Comparable

• We wrap edges of the PQ in a class called 
ComparableEdge
• It requires the label used by graph edges to be of 

a Comparable type
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Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

while |V1|<|V| && |A| > 0
add to A all edges incident to v
repeat

remove cheapest edge e from A
until A is empty || e is an edge between V1 and V2

if e is an edge between V1 and V2

let vßthe vertex of e in V2

move v from V2 to V1;
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MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q =
new SkewHeap<ComparableEdge<String,Integer>>();

String v = null;        // current vertex                                  
Edge<String,Integer> e; // current edge                                    
boolean searching;      // still building tree
g.reset();              // clear visited flags                             

// select a node from the graph, if any                                    
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;
v = vi.next();
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MCST: The Code

do {
// visit the vertex and add all outgoing edges
to the priority queue                         
g.visit(v);
Iterator<String> ai = g.neighbors(v);
while (ai.hasNext()) {

// turn it into outgoing edge                                      
e = g.getEdge(v,ai.next());
// add the edge to the queue                                       
q.add(new
ComparableEdge<String,Integer>(e));

}
...
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MCST: The Code
searching = true;
while (searching && !q.isEmpty()) {

// grab next shortest edge 
e = q.remove();
// Is e between V1 and V2 (subtle code!!)
v = e.there(); // does e connect V1 to V2?
if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {

searching = false;
g.visitEdge(g.getEdge(e.here(),

e.there()));
}

}
} while (!searching);
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Prim : Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of 

space

• Priority Queue O(|E|)
• Each edge takes up constant amount of space

• Every other object (including the neighbor 
iterator) uses a constant amount of space

• Result: O(|V| + |E|)
• Optimal in Big-O sense!
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Prim : Time Complexity

Assume Map ops are O(1) time (not quite true!)
For each iteration of do ... while loop
• Add neighbors to queue: O( deg(v) log |E|)
• Iterator operations are O(1) [Why?]
• Adding an edge to the queue is O(log |E|)

• Find next edge: O(# edges checked * log |E|)
• Removing an edge from queue is O(log |E|) time
• All other operations are O(1) time
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Prim : Time Complexity

Over all iterations of do ... while loop
Step I: Add neighbors to queue:
• For each vertex, it’s O( deg(v) log |E|) time
• Adding over all vertices gives

• which is O(|E| log |E|) = O(|E| log |V|)
• |E| ≤|V|2, so log |E| ≤ log |V|2 = 2 log |V| = O(log |V|)

deg(v)log | E |
v∈V∑ = log | E | deg(v)

v∈V∑ = log | E | *2 | E |
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Prim : Time Complexity

Over all iterations of do ... while loop
Step 2: Find next edge: O(# edges checked * log |E|)
• Each edge is checked at most once
• Adding over all edges gives O(|E| log |E|) again

Thus, overall time complexity (worst case) of Prim’s 
Algorithm is O(|E| log |V|)
• Typically written as O( m log n)

• Where m= |E| and n = |V|


