CSCI 136 Data Structures & Advanced Programming

> Lecture 32 Fall 2019 Instructors: B&S

Last Time

- Fundamental Graph Algorithms
 - Find Connected Components
 - Find minimum length paths (edge count)
 - Find minimum length paths (edge weights)
 - Dijkstra's Algorithm: What to compute

Today's Outline

- Dijkstra's Algorithm
 - How to compute it
 - Correctness and Complexity
- Minimum-cost spanning subgraph: Prim

Single Source Shortest Paths

Theorem (from previous lecture)

Let G=(V,E) be a directed graphs with non-negative edge weight function w: $E \rightarrow \mathbb{R}^+ \cup 0$.

Then for any vertex v, G contains a subgraph T_v of G such that T_v is a tree consisting minimum-weight paths from v to every other vertex of G.

Dijkstra's Algorithm: Efficiently construct such a tree T_v for each vertex v in G

Dijkstra Shortest Paths Tree

The Tree of Shortest Paths Found by Dijkstra's Algorithm

The Right Kind of Greed

- A start: take shortest edge from start vertex s
 - That must be a shortest path!
 - And now we have a small tree of shortest paths
- What next?
 - Design an algorithm by thinking inductively
 - Suppose we have found a tree T_k that has shortest paths from s to the k-I vertices "closest" to s
 - What vertex would we want to add next?

Finding the Best Vertex to Add to T_k

Question: Can we find the next closest vertex to s?

What's a Good Greedy Choice?

Idea: Pick edge e from u in T_k to v in $G-T_k$ that minimizes the length of the tree path from s up to-and through-e

Now add v and e to T_k to get tree T_{k+1}

Now T_{k+1} is a tree consisting of shortest paths from s to the k vertices closest to s! Repeat until k = |V|

Some Notation

- I(e) : length (weight) of edge e
- d(u,v) : *distance* from u to v
 - Weight of minimum-weight path from u to v
 - That is, length of minimum-length path....
- Note: d(,) defines a valid distance measure. That is
 - d(u,u) = 0 for every vertex u
 - d(u,v) = d(v,u) for every pair of vertices
 - $d(u,v) \le d(u,w) + d(w,v)$ for every triple of vertices
- So we'll now use phrases like minimum-length and closest in our discussion

Dijkstra's Insight

Theorem

- Let G=(V,E) be a directed graphs with non-negative edge length function I: $E \rightarrow \mathbb{R}^+ \cup 0$
- Let s be a vertex of G and let T_k be a tree of shortest paths from so to the k *closest* vertices to s (including s).
- Let u be a vertex u in G T_k that minimizes d(s,v) + l(v,u) over all edges (u,v) for which v is in T_k and u is in G T_k

Then, the tree $T_{k+1} = T_k \cup (v,u)$ consists of shortest paths from s to the k+l closest vertices to s

Let's prove the induction step....

Dijkstra's Algorithm

Dijkstra(G, s) // l(e) is the length of edge e let $T \leftarrow (\{s\}, \emptyset)$ and PQ be an empty priority queue for each neighbor v of s, add edge (s,v) to PQ with priority l(e) while T doesn't have all vertices of G and PQ is non-empty repeat

 $e \leftarrow PQ.removeMin() // skip edges with both$ until PQ is empty or e=(u,v) for $u \in T$, $v \notin T$ // ends in T if e=(u,v) for $u \in T$, $v \notin T$ add e (and v) to Tfor each neighbor w of v add edge (v,w) to PQ with weight/key d(s,v) + l(v,w) 15

Dijkstra: What Do We Return?

- As we find a new edge e = (v,w) to add to the tree of shortest paths, add it to a map.
- Precisely:
 - Use the PQ association(X,Y) edgeInfo where
 - X is d(s,v) + l(v,w)
 - Y is the edge e=(v,w)
 - Add the key/value pair (w, edgeInfo) to the map
- So the map entry with key w tells us the edge the shortest path used to get to w

Dijkstra's Algorithm

Priority Queue

Current: 500 SF->Port (need to add Port's neighbors to PQ)

SF->Den; SF->Dal 1000 1500

Current: 500 SF->Port

 SF->Port->Sea;
 SF->Den;
 SF->Dal

 600
 1000
 1500

Current: 600 SF->Port->Sea

SF->Den; SF->Dal 1000 1500

Current: 600 SF->Port->Sea

SF->Den; SF->Dal; SF->Port->Sea->Bos 1000 1500 3400

Current: 1000 SF->Den

SF->Dal; SF->Port->Sea->Bos 1500 3400

Current: 1000 SF->Den

 SF->Dal;
 SF->Den->Dal;
 SF->Den->Chi;
 SF->Port->Sea->Bos

 1500
 1700
 1900
 3400

Current: 1500 SF->Dal

 SF->Den->Dal;
 SF->Den->Chi;
 SF->Port->Sea->Bos

 1700
 1900
 3400

Current: 1500 SF->Dal

 SF->Den->Dal;
 SF->Den->Chi;
 SF->Dal->Atl;
 SF->Dal->LA;
 SF->Port->Sea->Bos

 1700
 1900
 2200
 2700
 3400

Current: 1900 SF->Den->Chi

 SF->Dal->Atl;
 SF->Dal->LA;
 SF->Port->Sea->Bos

 2200
 2700
 3400

Current: 1900 SF->Den->Chi

 SF->Dal->Atl;
 SF->Den->Chi->Atl;
 SF->Dal->LA;
 SF->Port->Sea->Bos

 2200
 2500
 2700
 3400

Current: 2200 SF->Dal->Atl

 SF->Den->Chi->Atl;
 SF->Dal->LA;
 SF->Dal->Atl->NY;
 SF->Port->Sea->Bos

 2500
 2700
 3000
 3400

Current: 3000 SF->Dal->Atl->NY

SF->Port->Sea->Bos 3400

Current: 3200 SF->Dal->Atl->NY->Bos

SF->Port->Sea->Bos 3400


```
Current: 3400 SF->Port->Sea->Bos
```


Current:

39

Dijkstra: Space Complexity

- Graph: O(|V| + |E|)
 - Each vertex and edge uses a constant amount of space
- Priority Queue O(|E|)
 - Each edge takes up constant amount of space
- Are there any hidden space costs?
- Result: O(|V| + |E|)
 - Optimal in Big-O sense!

Dijkstra : Time Complexity

Assume Map ops are O(I) time

Across all iterations of outer while loop

- Edges are added to and removed from the priority queue
 - But any edge is added (and removed) at most once!
 - Total PQ operation cost is O(|E| log |E|) time
 - Which is O(|E| log |V|) time
 - All other operations take constant time
- Thus time complexity is O(|E| log |V|)

Minimum-Cost Spanning Trees

Minimum-Cost Spanning Trees

Basic Graph Properties

- A subgraph of a graph G=(V, E) is a graph G'=(V',E') where
 - V' ⊆ V
 - E' \subseteq E, and
 - If $e \in E'$ where $e = \{u,v\}$, then $u, v \in V'$
- Special Subgraphs
 - If E' contains every edge of E having both ends in V', then
 G' is called the subgraph of G induced by V'
 - If V' = V, then G' is called a spanning subgraph of G

Basic Graph Properties

- Recall: An undirected graph G=(V,E) is connected if for every pair u,v in V, there is a path from u to v (and so from v to u)
- The maximal sized connected subgraphs of G are called its *connected components*
 - Note: They are induced subgraphs of G
- An undirected graph without cycles is a forest
- A connected forest is called a tree.
 - Not to be confused with the data structure!

Facts About Graphs

Thm: If G=(V,E) is a forest with |E| > 0, then G has at least one vertex v of degree I (a *leaf*)

• Hint: Consider a longest simple path in G...

Thm: If G=(V,E) is a tree then |E| = |V| - I.

• Hint: Induction on v: delete a leaf

Thm: Every connected graph G=(V,E) contains a spanning subgraph G'=(V,E') that is a tree

• That is, a spanning tree

Proof idea:

- If G is not a tree, then it contains a cycle C
- Removing an edge from C leaves G connected (why)
- Repeat until no more cycles remain

A Famous Problem

- Given a connected, undirected graph G=(V,E) with non-negative edge weights, find a minimum-weight, connected, spanning subgraph of G.
- Note: Such a subgraph must be a spanning tree!
- Frequently, we refer to the edge weights as costs and so this problem becomes:
- Given an undirected graph G with edge costs, compute a minimum-cost spanning tree of G.

Minimum-Cost Spanning Trees

Minimum-Cost Spanning Trees

Finding a MCST

Suppose we just wanted to find a PCST (pretty cheap spanning tree), here's one idea: Grow It Greedily!

- Pick a vertex and find its cheapest incident edge. Now we have a (small) tree
- Repeatedly add the cheapest edge to the tree that keeps it a tree (connected, no cycles)
- This method is called Prim's Algorithm
- How close might this get us to the MCST?

An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing algorithm always finds a minimum-cost spanning tree for any connected graph.

Contrast this with the greedy exam scheduling algorithm, which does *not* always find a minimum schedule (coloring)

Why does this work?

The Key

Def: Sets V_1 and V_2 form a *partition* of a set V if

$$V_1 \cup V_2 = V$$
 and $V_1 \cap V_2 = \emptyset$

Lemma: Let G=(V,E) be a connected graph and let V_1 and V_2 be a partition of V. Every MCST of G contains a cheapest edge between V_1 and V_2

- Let e be a cheapest edge between V_1 and V_2
- Let T be a MCST of G. If e ∉ T, then T∪ {e} contains a cycle C and e is an edge of C
- Some other edge e' of C must also be between V₁ and V₂; e is a cheapest edge, so w(e') = w(e) [Why?]

Using The Key to Prove Prim

We'll assume all edge costs are distinct

Otherwise proof is slightly less elegant Let T be the tree produced by the greedy algorithm and suppose T* is a MCST for G Claim: T = T*

Idea of Proof: Show that every edge added to the tree T by the greedy algorithm is in T* Clearly the first edge added to T is in T* Why? Use the key!

Using The Key

Now use induction!

- Suppose, for some $k \ge I$, that the first k edges added to T are in T*. These form a tree T_k
- Let V_1 be the vertices of T_k and let $V_2 = V V_1$
- Now, the greedy algorithm will add to T the cheapest edge e between V₁ and V₂
- But any MCST contains the (only!) cheapest edge between V_1 and V_2 , so e is in T*
- Thus the first k+I edges of T are in T*

Prim's Algorithm

 $prim(G) // finds \ a \ MCST \ of \ connected \ G=(V,E)$ $let \ v \ be \ a \ vertex \ of \ G; \ set \ V_1 \leftarrow \{v\} \ and \ V_2 \leftarrow V_1 - \{v\}$ $let \ A \ be \ the \ set \ of \ all \ edges \ between \ V_1 \ and \ V_2$ $while(|V_1| < |V|)$

let $e \leftarrow cheapest edge in A between <math>V_1$ and V_2 add e to MCST

let $u \leftarrow$ the vertex of e in V_2 move u from V_2 to V_1 ; add to A all edges incident to u

// note: A now may have edges with both ends in V_1

 $prim(G) // finds \ a \ MCST \ of \ connected \ G=(V,E)$ $let \ v \ be \ a \ vertex \ of \ G; \ set \ V_1 \leftarrow \{v\} \ and \ V_2 \leftarrow V_1 - \{v\}$ $let \ A \leftarrow \emptyset \qquad // \ A \ will \ contain \ ALL \ edges \ between \ V_1 \ and \ V_2$ $while \ |V_1| < |V|$

add to A all edges incident to v

repeat

remove cheapest edge e from Auntil e is an edge between V_1 and V_2 add e to MCST

let $v \leftarrow the vertex of e in V_2$ *move* v *from* V_2 *to* V_1 ;

- Note: If G is not connected, A will eventually be empty even though $|V_1| < |V|$
- We fix this by
 - Replacing while $(|V_1| < |V|)$ with while $(|V_1| < |V|) \&\& A \neq \emptyset$
 - Replacing until e is an edge between V_1 and V_2 with
 - until $A = \emptyset$ or e is an edge between V_1 and V_2
- Then Prim will find the MCST for the component containing v

prim(G) // finds a MCST of connected G=(V,E)let v be a vertex of G; set $V_1 \leftarrow \{v\}$ and $V_2 \leftarrow V_1 - \{v\}$ let $A \leftarrow \emptyset$ // A will contain ALL edges between V_1 and V_2 while $|V_1| < |V| \&\& |A| > 0$ add to A all edges incident to v repeat remove cheapest edge e from A until A is empty || e is an edge between V_1 and V_2 if e is an edge between V_1 and V_2 let $v \leftarrow$ the vertex of e in V_2 move v from V_2 to V_1 ;

Implementing Prim's Algorithm

- We'll "build" the MCST by marking its edges as "visited" in G
- We'll "build" V₁ by marking its vertices visited
- How should we represent A?
 - What operations are important to A?
 - Add edges
 - Remove cheapest edge
 - A priority queue!
- When we remove an edge from A, check to ensure it has one end in each of V_1 and V_2

ComparableEdge Class

- Values in a PriorityQueue need to implement Comparable
- We wrap edges of the PQ in a class called ComparableEdge
 - It requires the label used by graph edges to be of a Comparable type

prim(G) // finds a MCST of connected G=(V,E)let v be a vertex of G; set $V_1 \leftarrow \{v\}$ and $V_2 \leftarrow V_1 - \{v\}$ let $A \leftarrow \emptyset$ // A will contain ALL edges between V_1 and V_2 while $|V_1| < |V| \&\& |A| > 0$ add to A all edges incident to v repeat remove cheapest edge e from A until A is empty || e is an edge between V_1 and V_2 if e is an edge between V_1 and V_2 let $v \leftarrow$ the vertex of e in V_2 move v from V_2 to V_1 ;

MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q =
 new SkewHeap<ComparableEdge<String,Integer>>();

String v = null; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree
g.reset(); // clear visited flags

```
// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;
v = vi.next();
```

MCST: The Code

```
do {
```

```
// visit the vertex and add all outgoing edges
to the priority queue
g.visit(v);
Iterator<String> ai = g.neighbors(v);
while (ai.hasNext()) {
      // turn it into outgoing edge
      e = g.getEdge(v,ai.next());
      // add the edge to the queue
      q.add(new
        ComparableEdge<String,Integer>(e));
}
```

MCST: The Code

```
searching = true;
      while (searching && !q.isEmpty()) {
            // grab next shortest edge
            e = q.remove();
            // Is e between V_1 and V_2 (subtle code!!)
            v = e.there(); // does e connect V_1 to V_2?
            if (q.isVisited(v)) v = e.here();
            if (!g.isVisited(v)) {
                  searching = false;
                  q.visitEdge(g.getEdge(e.here(),
                         e.there()));
            }
      }
} while (!searching);
```

Prim : Space Complexity

- Graph: O(|V| + |E|)
 - Each vertex and edge uses a constant amount of space
- Priority Queue O(|E|)
 - Each edge takes up constant amount of space
- Every other object (including the neighbor iterator) uses a constant amount of space
- Result: O(|V| + |E|)
 - Optimal in Big-O sense!

Prim : Time Complexity

Assume Map ops are O(I) time (not quite true!) For each iteration of do ... while loop

- Add neighbors to queue: O(deg(v) log |E|)
 - Iterator operations are O(I) [Why?]
 - Adding an edge to the queue is O(log |E|)
- Find next edge: O(# edges checked * log |E|)
 - Removing an edge from queue is O(log |E|) time
 - All other operations are O(I) time

Prim : Time Complexity

Over all iterations of do ... while loop

Step I: Add neighbors to queue:

- For each vertex, it's O(deg(v) log |E|) time
- Adding over all vertices gives

$$\sum_{v \in V} \deg(v) \log |E| = \log |E| \sum_{v \in V} \deg(v) = \log |E| * 2 |E|$$

- which is $O(|E| \log |E|) = O(|E| \log |V|)$
 - $|E| \le |V|^2$, so $\log |E| \le \log |V|^2 = 2 \log |V| = O(\log |V|)$

Prim : Time Complexity

- Over all iterations of do ... while loop
- Step 2: Find next edge: O(# edges checked * log |E|)
 - Each edge is checked at most once
 - Adding over all edges gives O(|E| log |E|) again
- Thus, overall time complexity (worst case) of Prim's Algorithm is $O(|E| \log |V|)$
 - Typically written as O(m log n)
 - Where m = |E| and n = |V|