
CSCI 136
Data Structures &

Advanced Programming

Lecture 32
Fall 2019

Instructors: B&S



2

Last Time

• Fundamental Graph Algorithms
• Find Connected Components
• Find minimum length paths (edge count)

• Find minimum length paths (edge weights)
• Dijkstra’s Algorithm: What to compute



3

Today’s Outline

• Dijkstra’s Algorithm
• How to compute it
• Correctness and Complexity

• Minimum-cost spanning subgraph: Prim



8

Single Source Shortest Paths
Theorem (from previous lecture)

Let G=(V,E) be a directed graphs with non-negative 
edge weight function w: E →ℝ+∪ 0.

Then for any vertex v, G contains a subgraph Tv of 
G such that Tv is a tree consisting minimum-weight 
paths from v to every other vertex of G.

Dijkstra’s Algorithm: Efficiently construct such a 
tree Tv for each vertex v in G



9

Dijkstra Shortest Paths Tree



10

The Right Kind of Greed

• A start: take shortest edge from start vertex s
• That must be a shortest path!
• And now we have a small tree of shortest paths

• What next?
• Design an algorithm by thinking inductively
• Suppose we have found a tree Tk that has shortest 

paths from s to the k-1 vertices “closest” to s
• What vertex would we want to add next?



11

Finding the Best Vertex to Add to Tk

Not all edges are displayed

Question: Can we find the next closest vertex to s?



12

What’s a Good Greedy Choice?

Idea: Pick edge e from 
u in Tk to v in G-Tk that 
minimizes the length 
of the tree path from s 
up to–and through–e

Now add v and e to Tk
to get tree Tk+1

Now Tk+1 is a tree consisting of shortest paths from s to the 
k vertices closest to s! Repeat until k = |V|



13

Some Notation

• l(e) : length (weight) of edge e
• d(u,v) : distance from u to v

• Weight of minimum-weight path from u to v
• That is, length of minimum-length path….

• Note: d(,) defines a valid distance measure. That 
is

• d(u,u) = 0 for every vertex u
• d(u,v) = d(v,u) for every pair of vertices
• d(u,v) ≤ d(u,w) + d(w,v) for every triple of vertices

• So we’ll now use phrases like minimum-length 
and closest in our discussion



14

Dijkstra’s Insight

Theorem
Let G=(V,E) be a directed graphs with non-negative edge 
length function l: E →ℝ+∪ 0

Let s be a vertex of G and let Tk be a tree of shortest paths 
from so to the k closest vertices to s (including s).
Let u be a vertex u in G - Tk that minimizes d(s,v) + l(v,u) 
over all edges (u,v) for which v is in Tk and u is in G - Tk

Then, the tree Tk+1 = Tk ∪ (v,u) consists of shortest paths 
from s to the k+1 closest vertices to s

Let’s prove the induction step….



15

Dijkstra’s Algorithm
Dijkstra(G, s)  // l(e) is the length of edge e
let Tß({s}, ∅)  and PQ be an empty priority queue
for each neighbor v of s, add edge (s,v) to PQ with priority l(e)
while T doesn’t have all vertices of G and PQ is non-empty

repeat
e ß PQ.removeMin()   // skip edges with both

until  PQ is empty or e=(u,v) for u∈T, v ∉ T  // ends in T
if  e=(u,v) for u∈T, v ∉ T

add e (and v) to T
for each neighbor w of v

add edge (v,w) to PQ with weight/key d(s,v) + l(v,w)



16

Dijkstra: What Do We Return?

• As we find a new edge e = (v,w) to add to the 
tree of shortest paths, add it to a map.

• Precisely:
• Use the PQ association(X,Y) edgeInfo where

• X is d(s,v) + l(v,w)

• Y is the edge e=(v,w)

• Add the key/value pair (w, edgeInfo) to the map

• So the map entry with key w tells us the edge 
the shortest path used to get to w



17

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

Dijkstra's Algorithm



18

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Priority Queue



19

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Port; SF->Den;    SF->Dal
500 1000 1500

Priority Queue



20

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Den; SF->Dal
1000 1500

Current: 500 SF->Port  (need to add Port’s neighbors to PQ) 

500



21

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Port->Sea; SF->Den; SF->Dal
600 1000 1500

Current: 500 SF->Port 

500



22

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Den; SF->Dal
1000 1500

Current: 600 SF->Port->Sea

500

600



23

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Den; SF->Dal; SF->Port->Sea->Bos
1000 1500 3400

Current: 600 SF->Port->Sea 

500

600



24

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Dal; SF->Port->Sea->Bos
1500 3400

Current: 1000 SF->Den

500

600

1000



25

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1000 SF->Den

500

600

1000

SF->Dal; SF->Den->Dal; SF->Den->Chi; SF->Port->Sea->Bos
1500 1700 1900 3400



26

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1500 SF->Dal

500

600

1000

1500

SF->Den->Dal; SF->Den->Chi; SF->Port->Sea->Bos
1700 1900 3400



27

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1500 SF->Dal

500

600

1000

1500

SF->Den->Dal; SF->Den->Chi; SF->Dal->Atl; SF->Dal->LA; SF->Port->Sea->Bos
1700 1900 2200 2700 3400



28

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

SF->Den->Chi; SF->Dal->Atl; SF->Dal->LA; SF->Port->Sea->Bos
1900 2200 2700 3400

Current: 1700 SF->Den->Dal  (we already have Dallas!)

500

600

1000

1500



29

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1900 SF->Den->Chi

500

600

1000

1500

SF->Dal->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2200 2700 3400

1900



30

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 1900 SF->Den->Chi

500

600

1000

1500

1900

SF->Dal->Atl; SF->Den->Chi->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2200 2500 2700 3400



31

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 2200 SF->Dal->Atl

500

600

1000

1500

1900

2200

SF->Den->Chi->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2500 2700 3400



32

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 2200 SF->Dal->Atl

500

600

1000

1500

1900

2200

SF->Den->Chi->Atl; SF->Dal->LA; SF->Dal->Atl->NY; SF->Port->Sea->Bos
2500 2700 3000 3400



33

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 2500 SF->Den->Chi->Atl

500

600

1000

1500

1900

2200

SF->Dal->LA; SF->Dal->Atl->NY; SF->Port->Sea->Bos
2700 3000 3400



34

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 2700 SF->Dal->LA

500

600

1000

1500

1900

2200

2700

SF->Dal->Atl->NY; SF->Port->Sea->Bos
3000 3400



35

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 3000 SF->Dal->Atl->NY

500

600

1000

1500

1900

2200

2700

3000

SF->Port->Sea->Bos
3400



36

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 3000 SF->Dal->Atl->NY

500

600

1000

1500

1900

2200

2700

3000

SF->Dal->Atl->NY->Bos; SF->Port->Sea->Bos
3200 3400



37

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 3200 SF->Dal->Atl->NY->Bos

500

600

1000

1500

1900

2200

2700

3000

3200

SF->Port->Sea->Bos
3400



38

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 3400 SF->Port->Sea->Bos

500

600

1000

1500

1900

2200

2700

3000

3200



39

2800

900

600

700

700

100

500

1000

1500

1200

200

800

Seattle

Portland

SF

Boston

NY

Atlanta

Chicago

Denver

Dallas
LA

0

Current: 

500

600

1000

1500

1900

2200

2700

3000

3200



40

Dijkstra: Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of 

space

• Priority Queue O(|E|)
• Each edge takes up constant amount of space

• Are there any hidden space costs?
• Result: O(|V| + |E|)
• Optimal in Big-O sense!



41

Dijkstra : Time Complexity

Assume Map ops are O(1) time
Across all iterations of outer while loop
• Edges are added to and removed from the 

priority queue
• But any edge is added (and removed) at most 

once!
• Total PQ operation cost is O(|E| log |E|) time

• Which is O(|E| log |V|) time

• All other operations take constant time

• Thus time complexity is O(|E| log |V|)



42

Minimum-Cost Spanning Trees



43

Minimum-Cost Spanning Trees



44

Basic Graph Properties

• A subgraph of a graph G=(V, E) is a graph G’=(V’,E’) 
where
• V’ ⊆ V
• E’ ⊆ E, and

• If e ∈ E’ where e = {u,v}, then u, v ∈ V’

• Special Subgraphs
• If E’ contains every edge of E having both ends in V’, then 

G’ is called the subgraph of G induced by V’
• If V’ = V, then G’ is called a spanning subgraph of G



45

Basic Graph Properties

• Recall: An undirected graph G=(V,E) is 
connected if for every pair u,v in V, there is a 
path from u to v (and so from v to u)

• The maximal sized connected subgraphs of G 
are called its connected components
• Note: They are induced subgraphs of G

• An undirected graph without cycles is a forest

• A connected forest is called a tree.
• Not to be confused with the data structure!



46

Facts About Graphs

Thm: If G=(V,E) is a forest with |E| > 0, then G has at 
least one vertex v of degree 1 (a leaf)

• Hint: Consider a longest simple path in G…

Thm: If G=(V,E) is a tree then |E| = |V| - 1.
• Hint: Induction on v: delete a leaf

Thm: Every connected graph G=(V,E) contains a 
spanning subgraph G’=(V,E’) that is a tree

• That is, a spanning tree

Proof idea:
• If G is not a tree, then it contains a cycle C

• Removing an edge from C leaves G connected (why)

• Repeat until no more cycles remain



48

A Famous Problem

• Given a connected, undirected graph G=(V,E) 
with non-negative edge weights, find a 
minimum-weight, connected, spanning 
subgraph of G.

• Note: Such a subgraph must be a spanning 
tree!

• Frequently, we refer to the edge weights as 
costs and so this problem becomes:

• Given an undirected graph G with edge costs, 
compute a minimum-cost spanning tree of G.



49

Minimum-Cost Spanning Trees



50

Minimum-Cost Spanning Trees



51

Finding a MCST

Suppose we just wanted to find a PCST (pretty 
cheap spanning tree), here’s one idea:

Grow It Greedily!
• Pick a vertex and find its cheapest incident 

edge. Now we have a (small) tree
• Repeatedly add the cheapest edge to the tree 

that keeps it a tree (connected, no cycles)
• This method is called Prim’s Algorithm

• How close might this get us to the MCST?



52

An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing 
algorithm always finds a minimum-cost spanning 
tree for any connected graph.

Contrast this with the greedy exam scheduling 
algorithm, which does not always find a minimum 
schedule (coloring)

Why does this work?



53

The Key

Def: Sets V1 and V2 form a partition of a set V if 

V1∪V2 = V and V1∩V2 = ∅
Lemma: Let G=(V,E) be a connected graph and 
let V1 and V2 be a partition of V. Every MCST of 
G contains a cheapest edge between V1 and V2

• Let e be a cheapest edge between V1 and V2

• Let T be a MCST of G.  If e ∉ T, then T∪ {e} 
contains a cycle C and e is an edge of C

• Some other edge e’ of C must also be between V1
and V2;  e is a cheapest edge, so w(e’) = w(e) [Why?]



54

Using The Key to Prove Prim

We’ll assume all edge costs are distinct
Otherwise proof is slightly less elegant

Let T be the tree produced by the greedy 
algorithm and suppose T* is a MCST for G
Claim: T = T*
Idea of Proof: Show that every edge added to 
the tree T by the greedy algorithm is in T*
Clearly the first edge added to T is in T*

Why? Use the key!



55

Using The Key

Now use induction!
• Suppose, for some k ≥ 1, that the first k edges 

added to T are in T*. These form a tree Tk

• Let V1 be the vertices of Tk and let V2 = V-V1

• Now, the greedy algorithm will add to T the 
cheapest edge e between V1 and V2

• But any MCST contains the (only!) cheapest 
edge between V1 and V2, so e is in T*

• Thus the first k+1 edges of T are in T*



56

Prim’s Algorithm
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A be the set of all edges between V1 and V2

while(|V1|<|V|)
let eßcheapest edge in A between V1 and V2

add e to MCST
let ußthe vertex of e in V2

move u from V2 to V1;
add to A all edges incident to u
// note: A now may have edges with both ends in V1



57

Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

while |V1|<|V|
add to A all edges incident to v
repeat

remove cheapest edge e from A
until e is an edge between V1 and V2

add e to MCST
let vßthe vertex of e in V2

move v from V2 to V1;



58

Prim’s Algorithm (Variant)
• Note: If G is not connected, A will eventually be 

empty even though |V1| < |V|

• We fix this by
• Replacing while(|V1| < |V|) with while (|V1| < |V|) && A≠∅)

• Replacing until e is an edge between V1 and V2 with
• until A=∅ or e is an edge between V1 and V2

• Then Prim will find the MCST for the component 
containing v



59

Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

while |V1|<|V| && |A| > 0
add to A all edges incident to v
repeat

remove cheapest edge e from A
until A is empty || e is an edge between V1 and V2

if e is an edge between V1 and V2

let vßthe vertex of e in V2

move v from V2 to V1;



60

Implementing Prim’s Algorithm

• We’ll “build” the MCST by marking its edges 
as “visited” in G

• We’ll “build” V1 by marking its vertices visited
• How should we represent A?
• What operations are important to A?

• Add edges

• Remove cheapest edge

• A priority queue!

• When we remove an edge from A, check to 
ensure it has one end in each of V1 and V2



61

ComparableEdge Class

• Values in a PriorityQueue need to implement 
Comparable

• We wrap edges of the PQ in a class called 
ComparableEdge
• It requires the label used by graph edges to be of 

a Comparable type



62

Prim’s Algorithm (Variant)
prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A ß∅ // A will contain ALL edges between V1 and V2

while |V1|<|V| && |A| > 0
add to A all edges incident to v
repeat

remove cheapest edge e from A
until A is empty || e is an edge between V1 and V2

if e is an edge between V1 and V2

let vßthe vertex of e in V2

move v from V2 to V1;



63

MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q =
new SkewHeap<ComparableEdge<String,Integer>>();

String v = null;        // current vertex                                  
Edge<String,Integer> e; // current edge                                    
boolean searching;      // still building tree
g.reset();              // clear visited flags                             

// select a node from the graph, if any                                    
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;
v = vi.next();



64

MCST: The Code

do {
// visit the vertex and add all outgoing edges
to the priority queue                         
g.visit(v);
Iterator<String> ai = g.neighbors(v);
while (ai.hasNext()) {

// turn it into outgoing edge                                      
e = g.getEdge(v,ai.next());
// add the edge to the queue                                       
q.add(new
ComparableEdge<String,Integer>(e));

}
...



65

MCST: The Code
searching = true;
while (searching && !q.isEmpty()) {

// grab next shortest edge 
e = q.remove();
// Is e between V1 and V2 (subtle code!!)
v = e.there(); // does e connect V1 to V2?
if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {

searching = false;
g.visitEdge(g.getEdge(e.here(),

e.there()));
}

}
} while (!searching);



66

Prim : Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of 

space

• Priority Queue O(|E|)
• Each edge takes up constant amount of space

• Every other object (including the neighbor 
iterator) uses a constant amount of space

• Result: O(|V| + |E|)
• Optimal in Big-O sense!



67

Prim : Time Complexity

Assume Map ops are O(1) time (not quite true!)
For each iteration of do ... while loop
• Add neighbors to queue: O( deg(v) log |E|)
• Iterator operations are O(1) [Why?]
• Adding an edge to the queue is O(log |E|)

• Find next edge: O(# edges checked * log |E|)
• Removing an edge from queue is O(log |E|) time
• All other operations are O(1) time



68

Prim : Time Complexity

Over all iterations of do ... while loop
Step I: Add neighbors to queue:
• For each vertex, it’s O( deg(v) log |E|) time
• Adding over all vertices gives

• which is O(|E| log |E|) = O(|E| log |V|)
• |E| ≤|V|2, so log |E| ≤ log |V|2 = 2 log |V| = O(log |V|)

deg(v)log | E |
v∈V∑ = log | E | deg(v)

v∈V∑ = log | E | *2 | E |



69

Prim : Time Complexity

Over all iterations of do ... while loop
Step 2: Find next edge: O(# edges checked * log |E|)
• Each edge is checked at most once
• Adding over all edges gives O(|E| log |E|) again

Thus, overall time complexity (worst case) of Prim’s 
Algorithm is O(|E| log |V|)
• Typically written as O( m log n)

• Where m= |E| and n = |V|


