CSCI 136
Data Structures &
Advanced Programming

Lecture 32
Fall 2019
Instructors: B&S

Last

Time

* Fundamental Graph Algorithms

* Find Connected Com

* Find minimum length

* Find minimum length

ponents

baths (edge count)

paths (edge weights)

* Dijkstra’s Algorithm: What to compute

Today s Outline

* Dijkstra’s Algorithm
* How to compute it

e Correctness and Complexity

* Minimum-cost spanning subgraph: Prim

Single Source Shortest Paths

Theorem (from previous lecture)

Let G=(V,E) be a directed graphs with non-negative
edge weight function w: E -R*U 0.

Then for any vertex v, G contains a subgraph T, of
G such that T, is a tree consisting minimum-weight
paths from v to every other vertex of G.

Dijkstra’s Algorithm: Efficiently construct such a
tree T, for each vertex vin G

Dijkstra Shortest Paths Tree

The Tree of Shortest Paths Found by Dijkstra’s Algorithm

The Right Kind of G

* A start: take shortest edge from
e That must be a shortest path!

reed

start vertex s

* And now we have a small tree of shortest paths

* What next!
* Design an algorithm by thinking inc

e Suppose we have found a tree T, t
paths from s to the k-1 vertices “c

uctively

nat has shortest
osest”’ to s

* What vertex would we want to ad

d next!

Finding the Best Vertex to Add to T,

Not all edges are displayed

Question: Can we find the next closest vertex to s?

What's a Good Greedy Choice!?

@ |dea: Pick edge e from
O uin T, tovin G-T, that

(0]
Q&'ﬁ‘ minimizes the length
W‘.‘ O © @ | ofthetree pathfroms
N \-S. up to—and through-e
Now add v and e to T
to get tree Ty,

Now T,. is a tree consisting of shortest paths from s to the
Kk vertices closest to s! Repeat until k = |V|

Some Notation

I(e) : length (weight) of edge e

d(u,v) : distance fromuto v
« Weight of minimum-weight path from u to v
* Thatis, length of minimum-length path....

Note: d(,) defines a valid distance measure. That

IS

* d(u,u) =0 for every vertex u
e d(u,v) =d(v,u) for every pair of vertices
e d(u,v) =d(u,w) + d(w,v) for every triple of vertices

So we’'ll now use phrases like minimum-length
and closest in our discussion

Dijkstra’s Insight

Theorem

Let G=(V,E) be a directed graphs with non-negative edge
length function I: E —R*U 0

Let s be a vertex of G and let T, be a tree of shortest paths
from so to the k closest vertices to s (including s).

Let u be a vertex u in G - T, that minimizes d(s,v) + I(v,u)
over all edges (u,v) for which visin T,anduisin G- T,

Then, the tree T, =T, U (vu) consists of shortest paths
from s to the k+ 1 closest vertices to s

Let’'s prove the induction step....

Dijkstra’s Algorithm

Dytstra(G, s) /7 l(e) is the length of edge e
let 1< (Is), ©) and PQ be an empty priority queue
Jor each neighbor v of s, add edge (s,v) to PQ with priority [(e)
while T doesn t have all vertces of G and PQ is non-empty
repeat
e & PQ.removeMin() /7 skip edges with both
until PQ is empty or e=(wv) foru€l, v& 1" // endsin T’
if e=(wv)foru€l, veg T
add e (andv)w T

Jor each neighbor w of v
add edge (v,w) to PQ with weight/key d(s,v) + [(v,w) s

Dijkstra: What Do We Return!?

* As we find a new edge e = (v,w) to add to the
tree of shortest paths, add it to a map.

* Precisely:
* Use the PQ association(X,Y) edgelnfo where
e Xis d(s,v) *+ I(v,w)
e Y is the edge e=(v,w)
e Add the key/value pair (w, edgelnfo) to the map

* So the map entry with key w tells us the edge
the shortest path used to get to w

Seattle

100

[Portland }

2800

Chicago
900 5

Denver

Dijkstra's Algorithm

Boston

Atlanta }

Seattle

2800

100

[Portland }

. 1000
SF

0
w

Denver

900

Priority Queue

—

Chicago

600

Boston

Atlanta }

Seattle

2800

100

[Portland }

. 1000
SF

0
w

Denver

900

Priority Queue

—

Chicago

600

Boston

Atlanta }

Seattle 2800

100

[Portland }

500 000 Chicago

Denver

Current: 500 SF->Port (need to add Port’ s neighbors to PQ)

:> SF->Den; SF->Dal
1000 1500

Boston

Atlanta }

20

Seattle

2800

100

[Portland }
500

Denver

m

900

Current: 500 SF->Port
:> : SF->Den;

1000

SF->Dal
1500

Chicago

Boston

Atlanta }

21

Seattle

2800

600
100

[Portland }
500

Denver

m

900

Current: 600 SF->Port->Sea

:> SF->Den; SF->Dal
1000 1500

Chicago

Boston

Atlanta }

22

Seattle

2800

600
100

[Portland }
500

Denver

m

900

Current: 600 SF->Port->Sea

:> SF->Den; SF->Dal;
1000 1500

Chicago

Boston

Atlanta }

23

Seattle

2800

600
100

[Portland }
500

LA 1200

900

Current: 1000 SF->Den

:> SF->Dal; SF->Port->Sea->Bos
1500 3400

Chicago

Boston

Atlanta }

24

Seattle

2800

600
100

[Portland }
500

LA 1200

900

Current: 1000 SF->Den
:> SF->Dal;

1500

Boston

Chicago

Atlanta }

: SF->Port->Sea->Bos
3400

25

Seattle

2800

600
100

[Portland }
500

LA 1200

Chicago
900 &

Current: 1500 SF->Dal

: SF->Den->Dal; SF->Den->Chi;
1700 1900

1500

SF->Port->Sea->Bos
3400

Boston

Atlanta }

26

Seattle

2800

600
100

[Portland }
500

0
w

900

Current: 1500 SF->Dal

SF->Den->Dal; SF->Den->Chi;
:> 1700 1900

1500

Chicago

600

’

Boston

Atlanta }

SF->Port->Sea->Bos
3400

27

Seattle 2800

600
100

[Portland }
500

Chicago

900

LA 1200

1500
Current: 1700 SF->Den->Dal (we already have Dallas!)

:> SF->Den->Chi; SF->Dal->Atl; SF->Dal->LA;
1900 2200 2700

Boston

Atlanta }

SF->Port->Sea->Bos
3400

28

Seattle

2800

600
100

[Portland }
500

m

Chicago
1900

900

Current: 1900 SF->Den->Chi

:> SF->Dal->Atl; SF->Dal->LA;
2200 2700 3400

1500

SF->Port->Sea->Bos

Boston

Atlanta }

29

Seattle 2800

600 Boston
100

[Portland }
500

Chicago
1900

900

0
Atlanta }
LA
| 500
Current: 1900 SF->Den->Chi
:> SF->Dal->Atl; ; SF->Dal->LA; SF->Port->Sea->Bos

2200 2700 3400

30

Seattle 2800

600 Boston
100

[Portland }
500

Chicago
1900

900

Atlanta }

@ 2200

1500

Current: 2200 SF->Dal->Atl

:> SF->Den->Chi->Atl; SF->Dal->LA; SF->Port->Sea->Bos
2500 2700 3400

31

Seattle

2800

600
100

[Portland }
500

900

LA 1200

Chicago

1900

1500

Current: 2200 SF->Dal->Atl

:> SF->Den->Chi->Atl; SF->Dal->LA;
2500 2700

700

’

Boston

Atlanta }
2200

SF->Port->Sea->Bos
3400

32

Seattle 2800

600 Boston
100

[Portland }
500

Chicago
1900

900

0
Atlanta }
LA 2200
1500
Current: 2500 SF->Den->Chi->Atl
:> SF->Dal->LA; SF->Dal->Atl->NY; SF->Port->Sea->Bos

2700 3000 3400

33

Seattle

2800

600
100

[Portland }

Chicago
900 &

1900

2700
Current: 2700 SF->Dal->LA

:> SF->Dal->Atl->NY;
3000

1500

SF->Port->Sea->Bos
3400

700

Boston

Atlanta }
2200

34

Seattle

2800

600
100

[Portland }
500

Denver

900

Chicago

1900

LA 1200

2700
Current: 3000 SF->Dal->Atl->NY

:> SF->Port->Sea->Bos
3400

1500

700

Boston

Atlanta }

2200

35

Seattle 2800

600
100
[Portland }
500 500 Chicago

1900

Denver

LA 1200

2700 1500
Current: 3000 SF->Dal->Atl->NY

:> : SF->Port->Sea->Bos
3400

700

Boston

Atlanta }

2200

36

Seattle 2800

600
100
[Portland }
500 900

Denver

LA 1200

2700 1500
Current: 3200 SF->Dal->Atl->NY->Bos

:> SF->Port->Sea->Bos
3400

Chicago

1900

700

Boston

Atlanta }

2200

37

Seattle

2800

600
100

[Portland }
500

Denver

LA 1200

Chicago
900 &

1900

2700

Current: 3400 SF->Port->Sea->Bos

—

1500

700

Boston

Atlanta }
2200

38

Seattle

600
100

[Portland }
500

2800

Denver

Chicago
900 &

1900

2700

Current;

—

1500

700

Boston

Atlanta }
2200

39

Dijkstra: Space Complexity

Graph: O(|V]| + |E|)
e Each vertex and edge uses a constant amount of
space

Priority Queue O(|E|)

e Each edge takes up constant amount of space
Are there any hidden space costs!?

Result: O(|V| + |E])

e Optimal in Big-O sense!

40

Dijkstra : Time Complexity

Assume Map ops are O(l) time

Across all iterations of outer while loop

* Edges are added to and removed from the
priority queue

e But any edge is added (and removed) at most
once!

* Total PQ operation cost is O(|E| log |E|) time
e Which is O(|E| log |V]) time
* All other operations take constant time

* Thus time complexity is O(|E| log |V])

41

Minimum-Cost Spanning Trees

42

Minimum-Cost Spanning Trees

43

Basic Graph Properties

e A subgraph of a graph G=(V, E) is a graph G’=(V’,EF’)
where
e VCV
e F' C E, and
e Ife € E’ wheree ={u,v}, thenu,veVY
* Special Subgraphs

 If E' contains every edge of E having both ends in V’, then
G’ is called the subgraph of G induced by V’

e If V' =V, then G’ is called a spanning subgraph of G

44

Basic Graph Properties

Recall: An undirected graph G=(V,E) is
connected if for every pair u,v in V, there is a
path from u to v (and so from v to u)

The maximal sized connected subgraphs of G
are called its connected components

* Note: They are induced subgraphs of G
An undirected graph without cycles is a forest

A connected forest is called a tree.

* Not to be confused with the data structure!

45

Facts About Graphs

Thm: If G=(V,E) is a forest with |E| > 0, then G has at
least one vertex v of degree | (a ledf)

e Hint: Consider a longest simple path in G...
Thm: If G=(V,E) is a tree then |E| = |V| - I.

e Hint: Induction on v: delete a leaf
Thm: Every connected graph G=(V,E) contains a
spanning subgraph G’=(V,E’) that is a tree

e That is, a spanning tree

Proof idea:

e If Gis not a tree, then it contains a cycle C
* Removing an edge from C leaves G connected (why)

e Repeat until no more cycles remain

46

A Famous Problem

Given a connected, undirected graph G=(V,E)
with non-negative edge weights, find a
minimum-weight, connected, spanning
subgraph of G.

Note: Such a subgraph must be a spanning
tree!

Frequently, we refer to the edge weights as
costs and so this problem becomes:

Given an undirected graph G with edge costs,
compute a minimum-cost spanning tree of G. «

Minimum-Cost Spanning Trees

49

Minimum-Cost Spanning Trees

50

Finding a MCST

Suppose we just wanted to find a PCST (pretty
cheap spanning tree), here’s one idea:

Grow lt Greedily!

* Pick a vertex and find its cheapest incident
edge. Now we have a (small) tree

* Repeatedly add the cheapest edge to the tree
that keeps it a tree (connected, no cycles)

* This method is called Prim’s Algorithm
* How close might this get us to the MCST?

51

An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing
algorithm always finds a minimum-cost spanning
tree for any connected graph.

Contrast this with the greedy exam scheduling
algorithm, which does not always find a minimum
schedule (coloring)

Why does this work!?

52

The Key

Def: Sets V, and V, form a partition of a set V if
V,UV, =Vand V,NV, = @

Lemma: Let G=(V,E) be a connected graph and
let V|, and V, be a partition of V. Every MCST of
G contains a cheapest edge between V, and V,

* Let e be a cheapest edge between V, and V,

e Let Tbea MCST of G. Ife & T, then TU {e}
contains a cycle C and e is an edge of C

* Some other edge €’ of C must also be between V,
and V,; e is a cheapest edge, so w(e’) = w(e) [Why!]

53

Using The Key to Prove Prim

We’'ll assume all edge costs are distinct
Otherwise proof is slightly less elegant

Let T be the tree produced by the greedy
algorithm and suppose T* is a MCST for G

Claim: T =T*

|ldea of Proof: Show that every edge added to
the tree T by the greedy algorithm is in T*
Clearly the first edge added to T is in T*

Why! Use the key!

54

Using The Key

Now use induction!

e Suppose, for some k > |, that the first k edges
added to T are in T*. These form a tree T,

 Let V, be the vertices of T, and let V, = V-V,

* Now, the greedy algorithm will add to T the
cheapest edge e between V, and V,

e But any MCST contains the (only!) cheapest
edge between V, and V,, so e is in T*

* Thus the first k+1 edges of T are in T*

55

Prim’s Algorithm

prim(G) /7 finds a MCST of connected G=(V,)
let v be a vertex of G; set V, < (v} and V& V- {v)}
let A be the set of all edges between V; and V
while(| V;[<|V])
let e cheapest edge in A between V,; and Vs
add e to MCST
let u<the vertex of ein Vs
move u from Vyto V;
add to A all edges incident to u
// note: A now may have edges with both ends in 'V,

56

Prim’s Algorithm (Variant)

prim(G) /7 finds a MCST of connected G=(V,)
let v be a vertex of G; set V, < (v} and V& V- {v)}
let A<D /7 Awill contain ALL edges between V,; and V
white | V| <| V]

add to A all edges incident to v

repeat

remove cheapest edge e from A

until e is an edge between V; and V

add e to MCST

let v&the vertex of ein Vs

move v from Vyto V;

57

Prim’s Algorithm (Variant)

Note: If G is not connected, A will eventually be
empty even though |V,| < |V]|
We fix this by
* Replacing while(|V,| < |V|) with while (|V,| < |V|) && A#2)
* Replacing until e is an edge between V, and V, with

 until A= or e is an edge between V, and V,

Then Prim will find the MCST for the component
containing v

58

Prim’s Algorithm (Variant)

prim(G) /7 finds a MCST of connected G=(V,)
let v be a vertex of G; set V, < (v} and V& V- {v)}
let A<D /7 Awill contain ALL edges between V,; and V
while |V, |<| V| && |4]| >0
add to A all edges incident to v
repeat
remove cheapest edge e from A
until A is empty | | e is an edge between V; and V.,
if e is an edge between V; and V5
let v&the vertex of ein Vs
move v from Vyto V; 59

Implementing Prim’s Algorithm

 We'll “build” the MCST by marking its edges
as “‘visited” in G

o We'll “build” V, by marking its vertices visited

* How should we represent A!

* What operations are important to A!
e Add edges

* Remove cheapest edge
e A priority queue!

* When we remove an edge from A, check to
ensure it has one end in each of V, and V,

60

ComparableEdge Class

* Values in a PriorityQueue need to implement
Comparable

* We wrap edges of the PQ in a class called
ComparableEdge

* |t requires the label used by graph edges to be of
a Comparable type

6l

Prim’s Algorithm (Variant)

prim(G) /7 finds a MCST of connected G=(V,)
let v be a vertex of G; set V, < (v} and V& V- {v)}
let A<D /7 Awill contain ALL edges between V,; and V
while |V, |<| V| && |4]| >0
add to A all edges incident to v
repeat
remove cheapest edge e from A
until A is empty | | e is an edge between V; and V.,
if e is an edge between V; and V5
let v&the vertex of ein Vs
move v from Vyto V; &

MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q
new SkewHeap<ComparableEdge<String,Integer>>();

String v = null; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree
g.reset(); // clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;

v = vi.next();

63

MCST: The Code

// visit the vertex and add all outgoing edges
to the priority queue
g.visit(v);
Iterator<String> ai = g.neighbors(v);
while (ai.hasNext()) {
// turn it into outgoing edge
e = g.getEdge(v,ai.next());
// add the edge to the queue
g.add(new
ComparableEdge<String,Integer>(e));

64

MCST: The Code

searching = true;
while (searching && !g.isEmpty()) {
// grab next shortest edge
e = g.remove();
// Is e between V; and V, (subtle code!!)
v = e.there(); // does e connect V; to V,?
if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {
searching = false;
g.visitEdge(g.getEdge(e.here(),
e.there()));

}

} while (!searching);

65

Prim : Space Complexity

Graph: O(|V]| + |E|)
e Each vertex and edge uses a constant amount of
space

Priority Queue O(|E|)
e Each edge takes up constant amount of space

Every other object (including the neighbor
iterator) uses a constant amount of space

Result: O(|V| + |E])
e Optimal in Big-O sense!

66

Prim : Time Complexity

Assume Map ops are O(l) time (not quite true!)
For each iteration of do ... while loop

* Add neighbors to queue: O(deg(v) log |E|)
* |terator operations are O(l) [Why!]
e Adding an edge to the queue is O(log |E|)

* Find next edge: O(# edges checked * log |E|)

* Removing an edge from queue is O(log |E|) time

* All other operations are O(1) time

67

Prim : Time Complexity

Over all iterations of do ... while loop

Step |: Add neighbors to queue:
e For each vertex, it's O(deg(v) log |E|) time

e Adding over all vertices gives

Y deg(n)logl El=loglEIY _deg(v)=logl EI*2|E

e which is O(|E| log |E|) = O([E| log [V|)
e |E| <|V[2 so log |E| < log [V|2 = 2 log [V| = O(log |V])

68

Prim : Time Complexity

Over all iterations of do ... while loop
Step 2: Find next edge: O(# edges checked * log |E|)

* Each edge is checked at most once
e Adding over all edges gives O(|E| log |E|) again
Thus, overall time complexity (worst case) of Prim’s
Algorithm is O(|E| log |V|)
e Typically written as O(m log n)
* Where m= |E| and n = |V|

69

