
CSCI 136
Data Structures &

Advanced Programming

Lecture 31
Fall 2019

Instructors: Sam Bill L
Bill L Sam

2

Last Time

• Graph Data Structures: Implementation
• Graph Interface
• Graph Matrix

3

Today’s Outline

• Graph Data Structures: Implementation
• Adjacency List Implementation

• Featuring many Iterators!

• Minimum Spanning Tree
• Prim’s algorithm

4

Adjacency Array: Undirected Graph

Entry (i,j) store 1 if there is an edge between i and j; else 0
E.G.: edges(B,C) = 1 = edges(C,B)

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 1 0 1 1 0 0 1 1

C 1 1 0 1 0 1 0 0

D 0 1 1 0 1 1 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 1 0

G 1 1 0 0 0 1 0 0

H 1 1 0 0 1 0 0 0

5

Efficiency : Assuming Fast Map Ops
GraphMatrix

add O(1)

addEdge O(1)

getEdge O(1)

removeEdge O(1)

remove O(|V|)

space O(|V|2)

6

Adjacency List : Directed Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges having a given source

7

Adjacency List : Undirected Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges incident to a given
vertex

8

GraphList

• Rather than keep an adjacency matrix,
maintain an adjacency list of edges at each
vertex (only keep outgoing edges for directed
graphs)

• Support both directed and undirected graphs
(GraphListDirected, GraphListUndirected)

9

Vertex and GraphListVertex
• We use the same Edge class for list-based graphs
• We extend Vertex to include an Edge list
• GraphListVertex class adds to Vertex class
• A Structure to store edges adjacent to the vertex

protected Structure<Edge<V,E>> adjacencies; // adjacent edges
– adjacencies is created as a SinglyLinkedList of edges

• Several methods
public void addEdge(Edge<V,E> e)
public boolean containsEdge(Edge<V,E> e)
public Edge<V,E> removeEdge(Edge<V,E> e)
public Edge<V,E> getEdge(Edge<V,E> e)
public int degree()
// and methods to produce Iterators...

10

GraphListVertex
public GraphListVertex(V key){

super(key); // init Vertex fields
adjacencies = new SinglyLinkedList<Edge<V,E>>();

}

public void addEdge(Edge<V,E> e){
if (!containsEdge(e)) adjacencies.add(e);

}

public boolean containsEdge(Edge<V,E> e){
return adjacencies.contains(e);

}

public Edge<V,E> removeEdge(Edge<V,E> e) {
return adjacencies.remove(e);

}

11

GraphListVertex Iterators
// Iterator for incident edges
public Iterator<Edge<V,E>> adjacentEdges() {

return adjacencies.iterator();
}

// Iterator for adjacent vertices
public Iterator<V> adjacentVertices() {

return new GraphListAIterator<V,E>
(adjacentEdges(), label());

}

GraphListAIterator creates an Iterator over vertices based on
The Iterator over edges produced by adjacentEdges()

12

GraphListAIterator

public GraphListAIterator(Iterator<Edge<V,E>> i, V v) {
edges = (AbstractIterator<Edge<V,E>>)i;
vertex = v;

}

public V next() {
Edge<V,E> e = edges.next();
if (vertex.equals(e.here()))

return e.there();
else { // could be an undirected edge!

return e.here();
}

GraphListAIterator uses two instance variables

protected AbstractIterator<Edge<V,E>> edges;
protected V vertex;

13

GraphListEIterator
GraphListEIterator uses one instance variable

protected AbstractIterator<Edge<V,E>> edges;

GraphListEIterator
•Takes the Map storing the vertices
•Uses it to build a linked list of all edges
•Gets an iterator for this linked list and stores it, using it in its own
methods

14

GraphList

• To implement GraphList, we use the GraphListVertex
(GLV) class

• GraphListVertex class
• Maintain linked list of edges at each vertex

• Instance vars: label, visited flag, linked list of edges

• GraphList abstract class
• Instance vars:

• Map<V,GraphListVertex<V,E>> dict; // label -> vertex
• boolean directed; // is graph directed?

• How do we implement key GL methods?
• GraphList(), add(), getEdge(), …

15

protected GraphList(boolean dir){
dict = new Hashtable<V,GraphListVertex<V,E>>();
directed = dir;

}

public void add(V label) {
if (dict.containsKey(label)) return;
GraphListVertex<V,E> v = new

GraphListVertex<V,E>(label);
dict.put(label,v);

}

public Edge<V,E> getEdge(V label1, V label2) {
Edge<V,E> e = new Edge<V,E> (get(label1),
get(label2), null, directed);
return dict.get(label1).getEdge(e);

}

16

GraphListDirected

• GraphListDirected (GraphListUndirected) implements
the methods requiring different treatment due to
(un)directedness of edges
• addEdge, remove, removeEdge, …

17

// addEdge in GraphListDirected.java
// first vertex is source, second is destination
public void addEdge(V vLabel1, V vLabel2, E label) {

// first get the vertices
GraphListVertex<V,E> v1 = dict.get(vLabel1);
GraphListVertex<V,E> v2 = dict.get(vLabel2);
// create the new edge
Edge<V,E> e = new Edge<V,E>(v1.label(), v2.label(), label, true);
// add edge only to source vertex linked list (aka adjacency list)
v1.addEdge(e);

}

18

public V remove(V label) {

//Get vertex out of map/dictionary
GraphListVertex<V,E> v = dict.get(label);

//Iterate over all vertex labels (called the map “keyset”)
Iterator<V> vi = iterator();
while (vi.hasNext()) {

//Get next vertex label in iterator
V v2 = vi.next();

//Skip over the vertex label we're removing
//(Nodes don't have edges to themselves...)
if (!label.equals(v2)) {

//Remove all edges to "label"
//If edge does not exist, removeEdge returns null
removeEdge(v2,label);

}
}
//Remove vertex from map
dict.remove(label);
return v.label();

}

19

public E removeEdge(V vLabel1, V vLabel2) {

//Get vertices out of map
GraphListVertex<V,E> v1 = dict.get(vLabel1);
GraphListVertex<V,E> v2 = dict.get(vLabel2);

//Create a “temporary” edge connecting two vertices
Edge<V,E> e = new Edge<V,E>(v1.label(), v2.label(), null, true);

//Remove edge from source vertex linked list
e = v1.removeEdge(e);
if (e == null) return null;
else return e.label();

}

20

Efficiency Revisited

• Assume Map operations are O(1) (for now)
• |E| = number of edges

• |V| = number of vertices

• Runtime of add, addEdge, getEdge, removeEdge,
remove?

• Space usage?

• Conclusions
• Matrix is better for dense graphs

• List is better for sparse graphs
• For graphs “in the middle” there is no clear winner

21

Efficiency : Assuming Fast Map
Matrix GraphList

add O(1) O(1)

addEdge O(1) O(1)

getEdge O(1) O(|V|)

removeEdge O(1) O(|V|)

remove O(|V|) O(|E|)

space O(|V|2) O(|V|+|E|)

22

Minimum-Cost Spanning Trees

23

Minimum-Cost Spanning Trees

24

MST: Applications

• Cable/phone/ethernet network
• Circuit design
• Subroutine for other algorithms
• Travelling salesman approximation

• Financial markets

25

Basic Graph Properties

• Recall: An undirected graph G=(V,E) is
connected if for every pair u,v in V, there is a
path from u to v (and so from v to u)

• The maximal sized connected subgraphs of G
are called its connected components
• Note: They are induced subgraphs of G

• An undirected graph without cycles is a forest

• A connected forest is called a tree.
• Not to be confused with the data structure!

26

Facts About Graphs

Thm: Every connected graph G=(V,E) contains a
spanning subgraph G’=(V,E’) that is a tree

• That is, a spanning tree

Proof idea:
• If G is not a tree, then it contains a cycle C
• Removing an edge from C leaves G connected (why)

• Repeat until no more cycles remain

27

Edge-Weighted Graphs

• An edge-weighting of a graph G=(V,E) is an
assignment of a number (weight) to each edge
of G
• We write the weight of e as w(e) or we

• The weight w(G’) of any subgraph G’ of G is
the sum of the weights of the edges in G’

28

A Famous Problem

• Given a connected, undirected graph G=(V,E)
with non-negative edge weights, find a
minimum-weight, connected, spanning
subgraph of G.

• Frequently, we refer to the edge weights as
costs and so this problem becomes:

• Given an undirected graph G with edge costs,
compute a minimum-cost spanning tree of G.

29

Minimum-Cost Spanning Trees

30

Minimum-Cost Spanning Trees

31

Finding a MCST

Suppose we just wanted to find a PCST (pretty
cheap spanning tree), here’s one idea:

Grow It Greedily!
• Pick a vertex and find its cheapest incident

edge. Now we have a (small) tree
• Repeatedly add the cheapest edge to the tree

that keeps it a tree (connected, no cycles)
• This method is called Prim’s Algorithm

• How close might this get us to the MCST?

32

An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing
algorithm always finds a minimum-cost spanning
tree for any connected graph.

Contrast this with the greedy exam scheduling
algorithm, which does not always find a minimum
schedule (coloring)

Why does this work?

33

Prim’s Algorithm

prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V1ß{v} and V2ßV1 - {v}
let A be the set of all edges between V1 and V2

while(|V1|<|V|)
let eßcheapest edge in A between V1 and V2

add e to MCST

let ußthe vertex of e in V2

move u from V2 to V1;
add to A all edges incident to u

// note: A may have edges with both ends in V1

34

Implementing Prim’s Algorithm

• We’ll “build” the MCST by marking its edges
as “visited” in G

• We’ll “build” V1 by marking its vertices visited
• How should we represent A?
• What operations are important to A?

• Add edges

• Remove cheapest edge

• A priority queue!

• When we remove an edge from A, check to
ensure it has one end in each of V1 and V2

35

ComparableEdge Class

• Values in a PriorityQueue need to implement
Comparable

• We wrap edges of the PQ in a class called
ComparableEdge
• It requires the label used by graph edges to be of

a Comparable type

36

MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q =
new VectorHeap<ComparableEdge<String,Integer>>();

String v = null; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree
g.reset(); // clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;
v = vi.next();

37

MCST: The Code

do {
// visit the vertex and add all outgoing edges
to the priority queue
g.visit(v);
Iterator<String> ai = g.neighbors(v);
while (ai.hasNext()) {

// turn it into outgoing edge
e = g.getEdge(v,ai.next());
// add the edge to the queue
q.add(new
ComparableEdge<String,Integer>(e));

}
...

38

MCST: The Code
searching = true;
while (searching && !q.isEmpty()) {

// grab next shortest edge
e = q.remove();
// Is e between V1 and V2 (subtle code!!)
v = e.there(); // does e connect V1 to V2?
if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {

searching = false;
g.visitEdge(g.getEdge(e.here(),

e.there()));
}

}
} while (!searching);

39

Prim : Space Complexity

• Graph: O(|V| + |E|)
• Each vertex and edge uses a constant amount of

space

• Priority Queue O(|E|)
• Each edge takes up constant amount of space

• Every other object (including the neighbor
iterator) uses a constant amount of space

• Result: O(|V| + |E|)
• Optimal in Big-O sense!

40

Prim : Time Complexity

Assume Map ops are O(1) time (not quite true!)
For each iteration of do ... while loop
• Add neighbors to queue: O(log |E|) time each
• Find next edge: O(log |E|) time each

• Each edge is added to the queue at most once
• O(E log |E|) time

