
CSCI 136
Data Structures &

Advanced Programming

Lecture 30
Fall 2019

Instructors: B&S

2

Lab 10 Overview:
Graph Algorithms using structure5

3

Greedy Algorithms

• A greedy algorithm attempts to find a globally optimum
solution to a problem by making locally optimum
(greedy) choices

• Example: Graph Coloring

• A (proper) coloring of a graph G = (V,E) is an
assignment of a value (color) to each vertex so that
adjacent vertices get different values (colors)

• Typically one strives to minimize the number of colors
used

4

Greedy Coloring

5

Greedy Coloring : Math

Here’s a greedy coloring algorithm
Build a collection C = {C1, …, Ck} of sets of vertices
i = 0; Ci = {} // empty set
while G is has more vertices

for each vertex u in G
if u is not adjacent to any vertex of Ci

remove u from G and add u to Ci

add Ci to C
i++;

Return C as the coloring

6

Greedy Coloring : CS

Here’s a greedy coloring algorithm
Create a structure C to hold a collection of lists
while G is not empty

pick a vertex v in G; create an empty list L; add v to L
for each vertex u ≠ v in G

if u is not adjacent to any vertex of L
add u to L

remove all vertices of L from G
add L to C

Return C as the coloring

7

Greedy Coloring

8

Greedy Coloring

Some observations
• Each list (color class) L is a set of vertices no two of

which are adjacent (an independent set)
• Each color class is maximal: cannot be made any larger

• The hope is that this results in fewer colors being needed
• But the solution is not always optimum!

• This is a very hard problem

• The coloring problem is the same as finding a partition of
the vertex set into independent sets
• Partition means union of disjoint sets

9

Lab 10 : Exam Scheduling

Find a schedule (set of time slots) for exams so that
• No student has two exams in the same slot
• Every course is in a slot

• The number of slots is as small as possible
This is just the graph coloring problem in disguise!
• Each course is a vertex

• Two vertices are adjacent if the courses share students
• A slot must be an independent set of vertices (that is, a

color class)

10

Lab 10 Notes: Using Graphs

• Create a new graph in structure5
• GraphListDirected, GraphListUndirected,

• GraphMatrixDirected, GraphMatrixUndirected

• Graph<V,E> conflictGraph = new GraphListUndirected<V,E>();

11

Lab 10 : Useful Graph Methods
• void add(V label)

• add vertex to graph

• void addEdge(V vtx1, V vtx2, E label)
• add edge between vtx1 and vtx2

• Iterator<V> neighbors(V vtx1)
• Get iterator for all neighbors to vtx1

• boolean isEmpty()
• Returns true iff graph is empty

• Iterator<V> iterator()
• Get vertex iterator

• V remove(V label)
• Remove a vertex from the graph

• E removeEdge(V vLabel1, V vLabel2)
• Remove an edge from graph

12

Last Time

• Lab 10 Overview: Exam Scheduling
• Array-Based Graph implementations

13

This Time

• Array-Based Graph Efficiency
• List-Based Graph Implementations
• Iterators Everywhere….

14

GraphMatrix Efficiency

• Assume Map operations are O(1)
(For now---even though they are not!)

• |E| = number of edges (often folks write m = |E|)

• |V| = number of vertices (often folks write n = |V|)

• Runtime of add, addEdge, getEdge, removeEdge,
remove?

• Space usage?
• Conclusions

• Matrix is good for dense graphs
• Have to commit to maximum # of vertices in advance

15

Efficiency : Assuming O(1) Map Ops

GraphMatrix

add O(1)

addEdge O(1)

getEdge O(1)

removeEdge O(1)

remove O(|V|)

space O(|V|2)

16

Adjacency List : Directed Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges having a given source

17

Adjacency List : Undirected Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges incident to a given
vertex

18

GraphList

• Maintain an adjacency list of edges at each
vertex (no adjacency matrix)
• Keep only outgoing edges for directed graphs

• Support both directed and undirected graphs
(GraphListDirected, GraphListUndirected)

19

Vertex and GraphListVertex
• We use the same Edge class for all graph types
• We extend Vertex to include an Edge list
• GraphListVertex class adds to Vertex class
• A Structure to store edges adjacent to the vertex

protected Structure<Edge<V,E>> adjacencies; // adjacent edges
– adjacencies is created as a SinglyLinkedList of edges

• Several methods
public void addEdge(Edge<V,E> e)
public boolean containsEdge(Edge<V,E> e)
public Edge<V,E> removeEdge(Edge<V,E> e)
public Edge<V,E> getEdge(Edge<V,E> e)
public int degree()
// and methods to produce Iterators...

20

GraphListVertex
public GraphListVertex(V key){

super(key); // init Vertex fields
adjacencies = new SinglyLinkedList<Edge<V,E>>();

}

public void addEdge(Edge<V,E> e){
if (!containsEdge(e)) adjacencies.add(e);

}

public boolean containsEdge(Edge<V,E> e){
return adjacencies.contains(e);

}

public Edge<V,E> removeEdge(Edge<V,E> e) {
return adjacencies.remove(e);

}

21

GraphListVertex Iterators
// Iterator for incident edges
public Iterator<Edge<V,E>> adjacentEdges() {

return adjacencies.iterator();
}

// Iterator for adjacent vertices
public Iterator<V> adjacentVertices() {

return new GraphListAIterator<V,E>
(adjacentEdges(), label());

}

GraphListAIterator creates an Iterator over vertices based on
the Iterator over edges produced by adjacentEdges()

22

GraphListAIterator

public GraphListAIterator(Iterator<Edge<V,E>> i, V v) {
edges = (AbstractIterator<Edge<V,E>>)i;
vertex = v;

}

public V next() {
Edge<V,E> e = edges.next();
if (vertex.equals(e.here()))

return e.there();
else { // could be an undirected edge!

return e.here();
}

GraphListAIterator uses two instance variables

protected AbstractIterator<Edge<V,E>> edges;
protected V vertex;

23

GraphListEIterator
GraphListEIterator uses one instance variable

protected AbstractIterator<Edge<V,E>> edges;

GraphListEIterator
•Takes the Map storing the vertices
•Uses it to build a linked list of all edges
•Gets an iterator for this linked list and stores it, using it in its own
methods

24

GraphList

• To implement GraphList, we use the GraphListVertex
(GLV) class

• GraphListVertex class
• Maintain linked list of edges at each vertex

• Instance vars: label, visited flag, linked list of edges

• GraphList abstract class
• Instance vars:

• Map<V,GraphListVertex<V,E>> dict; // label -> vertex
• boolean directed; // is graph directed?

• How do we implement key GL methods?
• GraphList(), add(), getEdge(), …

25

protected GraphList(boolean dir){
dict = new Hashtable<V,GraphListVertex<V,E>>();
directed = dir;

}

public void add(V label) {
if (dict.containsKey(label)) return;
GraphListVertex<V,E> v = new

GraphListVertex<V,E>(label);
dict.put(label,v);

}

public Edge<V,E> getEdge(V label1, V label2) {
Edge<V,E> e = new Edge<V,E> (get(label1),
get(label2), null, directed);
return dict.get(label1).getEdge(e);

}

26

GraphListDirected

• GraphListDirected (GraphListUndirected) implements
the methods requiring different treatment due to
(un)directedness of edges
• addEdge, remove, removeEdge, …

27

// addEdge in GraphListDirected.java
// first vertex is source, second is destination
public void addEdge(V vLabel1, V vLabel2, E label) {

// first get the vertices
GraphListVertex<V,E> v1 = dict.get(vLabel1);
GraphListVertex<V,E> v2 = dict.get(vLabel2);
// create the new edge
Edge<V,E> e = new Edge<V,E>(v1.label(), v2.label(), label, true);
// add edge only to source vertex linked list (aka adjacency list)
v1.addEdge(e);

}

28

public V remove(V label) {

//Get vertex out of map/dictionary
GraphListVertex<V,E> v = dict.get(label);

//Iterate over all vertex labels (called the map “keyset”)
Iterator<V> vi = iterator();
while (vi.hasNext()) {

//Get next vertex label in iterator
V v2 = vi.next();

//Skip over the vertex label we're removing
//(Nodes don't have edges to themselves...)
if (!label.equals(v2)) {

//Remove all edges to "label"
//If edge does not exist, removeEdge returns null
removeEdge(v2,label);

}
}
//Remove vertex from map
dict.remove(label);
return v.label();

}

29

public E removeEdge(V vLabel1, V vLabel2) {

//Get vertices out of map
GraphListVertex<V,E> v1 = dict.get(vLabel1);
GraphListVertex<V,E> v2 = dict.get(vLabel2);

//Create a “temporary” edge connecting two vertices
Edge<V,E> e = new Edge<V,E>(v1.label(), v2.label(), null, true);

//Remove edge from source vertex linked list
e = v1.removeEdge(e);
if (e == null) return null;
else return e.label();

}

30

Efficiency Revisited

• Assume Map operations are O(1) (for now)
• |E| = number of edges

• |V| = number of vertices

• Runtime of add, addEdge, getEdge, removeEdge,
remove?

• Space usage?

• Conclusions
• Matrix is better for dense graphs

• List is better for sparse graphs
• For graphs “in the middle” there is no clear winner

31

Efficiency : Assuming Fast Map
Matrix GraphList

add O(1) O(1)

addEdge O(1) O(1)

getEdge O(1) O(|V|)

removeEdge O(1) O(|V|)

remove O(|V|) O(|E|)

space O(|V|2) O(|V|+|E|)

32

Basic Graph Properties

• A subgraph of a graph G=(V, E) is a graph G’=(V’,E’)
where
• V’ ⊆ V
• E’ ⊆ E, and

• If e ∈ E’ where e = {u,v}, then u, v ∈ V’

• If E’ contains every edge of E having both ends in V’,
then G’ is called the subgraph of G induced by V’

• If V’ = V, then G’ is called a spanning subgraph of G

