
CSCI 136
Data Structures &

Advanced Programming

Lecture 3
Fall 2019

Instructors: Bill & Sam

Administrative Details

• Lab today in TCL 217a (and 216)
• Lab is due by 10 pm Sunday

• Lab 1 design doc is “due” at beginning of lab
• Written design docs will be required at all labs

• Several implementation options
• Some may be better than others....

2

3

Last Time

• Further examples : The Game of Nim
• Operators & operator precedence
• Expressions
• Control structures
• Branching: if – else, switch, break, continue

• Looping: while, do – while, for, for – each

Today’s Outline

• Discussion: Lab 1
• Object oriented programming Basics (OOP)
• Strings and String methods

4

Lab 1

• Purpose
• Exercise your Java skills by programming a game
• Learn some new tools

• Terminal command-line interface to Unix
• Atom program editor

• GitHub version control system

• Learn some code development habits
• Design documents
• Pseudo-code

5

https://williams-cs.github.io/cs136-f19-www/labs/coinstrip.html

Lab 1

• GitHub
• Cloud support for file storage with version control

• Basic commands
• git clone – make a local copy of an existing repository
• git add – add files to local copy of repository

• git rm – remove a file from local copy

• git commit – commit staged changes
• git push – update master repository with committed

changes in local repository
• git pull – update local repository from master

6

https://williams-cs.github.io/cs136-f19-www/labs/coinstrip.html

Lab 1

• CoinStrip Game
• Two-player coin-moving game (let’s play!)
• Essentials

• Decide on game representation
• Build the board

– Random coin locations

• Allow players to take turns
– Enter, check, process a move

• Congratulate the winner!

7

https://williams-cs.github.io/cs136-f19-www/labs/coinstrip.html

Reminder : Importing Classes

In Sum4.java we used the Scanner class for input
The Java distribution has a variety of useful classes
To use such a class, you must import it

Unless it is in the directory of your program
To do this, use import with the package name
Examples

import java.util.Scanner;
import java.util.Random;
import structure5.*; // entire package

8

9

Object-Oriented Programming

• Objects are building blocks of Java software

• Programs involve collections of objects
• Cooperate to complete tasks

• Represent “state” of the program
• Communicate by sending messages to each other

• Through method invocation

10

Object-Oriented Programming
• Objects can model:
• Physical items - Dice, board, dictionary
• Concepts - Date, time, words, relationships
• Processes - Sort, search, simulate

• Objects contain:
• State (instance variables)

• Attributes, relationships to other objects, components
– Letter value, grid of letters, number of words

• Functionality (methods)
• Accessor and mutator methods

– addWord, lookupWord, removeWord

11

Object Support in Java
• Java supports the creation of programmer-

defined types called class types
• A class declaration defines data components

and functionality of a type of object
• Data components: instance variable (field)

declarations
• Functionality: method declarations
• Constructor(s): special method(s) describing the

steps needed to create an object (instance) of this
class type

12

A Simple Class
Premise: Define a type that stores information
about a student: name, age, and a single grade.
Declare a Java class called Student with data
components (fields/instance variables)

String name;
int age;
char grade;

And methods for accessing/modifying fields
• getName, getAge, getGrade
• setAge, setGrade
Declare a constructor, also called Student

public class Student {
// instance variables
private int age;
private String name;
private char grade;

// A constructor
public Student(int theAge, String theName,

char theGrade) {
age = theAge;
name = theName;
grade = theGrade;

}

// Methods for accessing/modifying objects
// ...see next slide...

13

public int getAge() {return age;}

public String getName() {return name;}

public char getGrade() {return grade;}

public void setAge(int newAge) {age = newAge;}

public void setGrade(char grade) {
this.grade = grade;

}
} // end of class declaration

14

Testing the Student Class
public class TestStudent {

public static void main(String[] args) {
Student a = new Student(18, "Patti Smith", 'A');
Student b = new Student(20, "Joan Jett", 'B');
// Nice printing
System.out.println(a.getName() + ", " +

a.getAge() + ", " + a.getGrade());
System.out.println(b.getName() + ", " +

b.getAge() + ", " + b.getGrade());
// Tacky printing
System.out.println(a);
System.out.println(b);

}
}

15

Worth Noting

• We can create as many student objects as we
need, including arrays of Students

Student[] class = new Student[3];
class[0] = new Student(18, "Patti Smith", 'A');
class[1] = new Student(20, "Joan Jett", 'B');
class[2] = new Student(20, "David Bowie", 'A');

• Fields are private: only accessible in Student class
• Methods are public: accessible to other classes

• Some methods return values, others do not
• public String getName();
• public void setAge(int theAge); 16

A Programming Principle

Use constructors to initialize the state of an object,
nothing more.

• State: instance variables
• Usually constructors are short, simple methods
• More complex constructors will typically use

helper methods or other constructors

• See Student2 example

17

Access Modifiers

18

• public and private are called access modifiers
• They control access of other classes to instance variables and

methods of a given class
• public : Accessible to all other classes
• private : Accessible only to the class declaring it

• There are two other levels of access that we’ll
see later

• Data-Hiding (encapsulation) Principle
• Make instance variables private
• Use public methods to access/modify object data
• Use private methods otherwise

public class Student {
// instance variables
private int age;
private String name;
private char grade;

// A constructor
public Student(int age, String name,

char grade) {
// What would age, name, grade
// refer to here...?

}

19

More Gotchas

public class Student {
// instance variables
private int age;
private String name;
private char grade;

// A constructor
public Student(int age, String name,

char grade) {
this.age = age;
this.name = name;
this.grade = grade;

}
20

Use This

‘Objectifying’ Nim

Goal: Allow multiple ‘Nim’ instances (objects)
• Supports playing simultaneous games
• Allow each game to have its own state
How?
• Delete ‘static’ from data declarations

• Except for constants minPileSize, maxPileSize
• They have same (class-wide) value for all Nim objects
• This is a subjective choice to illustrate a point

• Delete ‘static’ from methods that act on single Nim
instance
• Every method except main

• Add a constructor method to initialize new Nim instance
• In fact, for convenience, add 2 constructors

21

Data Declaration : Object Nim

private static int minPileSize = 3;

private static int maxPileSize = 8;

private static Scanner in = new Scanner(System.in);

private int[] board

private int piles

private int pilesLeft;

private Random rng = new Random();
22

Constructors : Object Nim
public Nim2(int size) {

piles = size; // Create the board
board = new int[piles];

// Fill the board with randomly sized piles
for(int i=0; i< board.length; i++)

board[i] = MIN_PILE_SIZE + rng.nextInt(
MAX_PILE_SIZE - MIN_PILE_SIZE + 1);

pilesLeft = piles; // No pile is empty
}

public Nim2() { this(5); } // Constructor chaining

23

String in Java Is a Class Type

• Java provides special support for String objects
• String literals: “Bob was here!”, “-11.3”, “A”, “”

• If a class provides a method with signature
public String toString()

Java will automatically use that method to produce a
String representation of an object of that class type.

• For example
System.out.println(aStudent);

would use the toString method of Student to
produce a String to pass to the println method

Pro Tip: Always provide a toString method!
24

Nim3 : Nim with toString()

Replace games[i].displayBoard() with
System.out.println(games[i])

25

public String toString() {
String result = ""; // Set to empty string

for(int i = 0; i < board.length; i++) {
result += i + ":";

// Display a pile
for(int j=0; j < board[i]; j++)

result += " O";

result += "\n"; // Add new-line
}
return result;

}

String methods in Java

• Useful methods (also check String javadoc page)
• indexOf(string) : int
• indexOf(string, startIndex) : int
• substring(fromPos, toPos) : String
• substring(fromPos) : String
• charAt(int index) : char
• equals(other) : bool ß Always use this!
• toLowerCase() : String
• toUpperCase() : String
• compareTo(string) : int
• length() : int
• startsWith(string) : bool

• Understand special cases!
26

Using Strings
• Application: Parsing an XML file of a CD collection

• XML = eXtensible Markup Language
• XML is used for many things
• Music track info:

<TRACK>
<NAME>Big Willie style</NAME>
<ARTIST>Will Smith</ARTIST>
<ALBUM>Big Willie style</ALBUM>
<GENRE>Pop Rap</GENRE>
<YEAR>1997</YEAR>

</TRACK>

• How can we find and print just the track names?
• See TrackTitles.java
• java TrackTitles < trackList.xml

27

Summary

Java
• More on conditional control flow
• Switch, break, continue

• Using classes from external packages
• Random, Scanner

• Import statement

• Use of static for non-object-based data and
methods

• Introduction to classes and objects
28

Lecture Ends Here

29

