
CSCI 136
Data Structures &

Advanced Programming

Lecture 29
Fall 2019

Instructors: Sam Bill L
Bill L Sam

2

Admin

• Lab 10 (last lab!) out
• Fill out form by Monday at midnight

3

Last Time

• BFS and DFS
• Intro to directed graphs

4

Today’s Outline

• Directed graphs
• Graph Data Structures
• Graph Interface
• How do we actually store a graph?

5

Java
Data Structures

Organization

Discrete Math Theory
Algorithms

Programming Languages

Operating Systems

AI

Compilers

Graphics
Linear Algebra

Directed Graphs

Def’n: In a directed graph G = (V,E), each edge e in E is an ordered
pair: e = (u,v) vertices: its incident vertices. The source of e is u; the
destination/target is v.

Note: (u,v) ≠ (v,u)

6

Directed Graphs

• The (out) neighbors of B
are D, G, H: B has out-
degree 3

• The in neighbors of B are
A, C: B has in-degree 2

• A has in-degree 0: it is a
source in G; D has out-
degree 0: it is a sink in G

A walk is still an alternating sequence of vertices and edges
u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

but now ei = (vi-1,vi): all edges point along direction of walk

7

Directed Graphs

• A, B, H, E, D is a walk from
A to D

• It’s also a (simple) path
• D, E, H, B, A is not a walk

from D to A
• B, G, F, C, B is a (directed)

cycle (it’s a 4-cycle)
• So is H, E, H (a 2-cycle)

• D is reachable from A (via path A, B, D), but A is not
reachable from D

• In fact, every vertex is reachable from A

8

Directed Graphs

• A BFS of G from A visits
every vertex

• A BFS of G from F visits all
vertices but A

• A BFS of G from E visits
only E, H, D

• Connectivity in directed graphs is more subtle than in
undirected graphs!

9

Directed Graphs
• Vertices u and v are mutually

reachable vertices if there are
paths from u to v and v to u

• Maximal sets of mutually
reachable vertices form the
strongly connected
components of G

10

Implementing Graphs

• Involves a number of implementation
decisions, depending on intended uses
• What kinds of graphs will be availabe?

• Undirected, directed, mixed

• What underlying data structures will be used?

• What functionality will be provided
• What aspects will be public/protected/private

• We’ll focus on popular implementations for
undirected and directed graphs (separately)

11

Graphs in structure5

• We want to store information at vertices and at
edges, but we favor vertices
• Let V and E represent the types of information held

by vertices and edges respectively
• Interface Graph<V,E> extends Structure<V>

• Vertices are the building blocks; edges depend on them

• Type V holds a label for a (hidden) vertex type
• Type E holds a label for an (available) edge type
• Label: Application-specific data for a vertex/edge

12

Graphs in structure5

• So, the methods described in the Structure<V>
interface are about vertices (but also impact
edges: e.g., clear())

• We’ll want to add a number of similar methods
to provide information about edges, and the
graph itself

13

Recall: Desired Functionality

• What are the basic operations we need to
describe algorithms on graphs?
• Given vertices u and v: are they adjacent?

• Given vertex v and edge e, are they incident?
• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (degree of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the neighbors of v (or the edges
incident with v)

14

Graph Interface Methods
• void add(V vtx), V remove(V vtx)

• Add/remove vertex to/from graph

• void addEdge(V vtx1, V vtx2, E edgeLabel),

E removeEdge(V vtx1, V vtx2)

• Add/remove edge between vtx1 and vtx2

• boolean containsEdge(V vtx1, V vtx2)

• Returns true iff there is an edge between vtx1 and vtx2

• Edge<V,E> getEdge(V vtx1, V vtx2)

• Returns edge between vtx1 and vtx2

• void clear()

• Remove all nodes (and edges) from graph

15

Graph Interface Methods
• boolean visit(V vertexLabel)

• Mark vertex as “visited” and return previous value of visited flag
• boolean visitEdge(Edge<V,E> e)

• Mark edge as “visited”

• boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)
• Returns true iff vertex/edge has been visited

• Iterator<V> neighbors(V vtx1)
• Get iterator for all neighbors of vtx1
• For directed graphs, out-edges only

• Iterator<V> iterator()
• Get vertex iterator

• void reset()
• Remove visited flags for all nodes/edges

16

Edge Class

• Graph edges are defined in their own public class
• Edge<V,E>(V vtx1, V vtx2,

E label, boolean directed)

• Construct a (possibly directed) edge between two labeled
vertices (vtx1->vtx2)

• Useful methods:
label(), here(), there()
setLabel(), isVisited(), isDirected()

17

Reachability: Breadth-First Traversal

BFS(G, v) // Do a breadth-first search of G starting at v

// pre: all vertices are marked as unvisited
count ß0;

Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++

return count;

Now compare value returned from BFS(G,v) to size of V

18

Breadth-First Traversal
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}

19

Breadth-First Traversal of Edges
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}

20

Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited

//Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count=1;
for each unvisited neighbor u of v:

count += DFS(G,u);
return count;

21

Recursive Depth-First Search
int DFS(Graph<V,E> g, V src) {

g.visit(src);
int count = 1;
Iterator<V> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next))

count += DFS(g, next);
}

}
return count;

}

22

Representing Graphs
• Two standard approaches

• Option 1: Array-based (directed and undirected)

• Option 2: List-based (directed and undirected)

• We’ll look at both
• Array-based graphs store the edge information in a 2-

dimensional array indexed by the vertices
• List-based graphs store the edge information in a (1-

dimensional) array of lists
• The array is indexed by the vertices

• Each array element is a list of edges incident with that vertex

23

Adjacency Array: Directed Graph

Entry (i,j) stores 1 if there is an edge from i to j; 0 otherwise
e.g.: edges(B,C) = 1 but edges(C,B) = 0

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 0 0 0 1 0 0 1 1

C 0 1 0 1 0 0 0 0

D 0 0 0 0 0 0 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 0 0

G 0 0 0 0 0 1 0 0

H 0 0 0 0 1 0 0 0

24

Adjacency Array: Undirected Graph

Entry (i,j) stores 1 if there is an edge between i and j; else
0 E.G.: edges(B,C) = 1 = edges(C,B)

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 1 0 1 1 0 0 1 1

C 1 1 0 1 0 1 0 0

D 0 1 1 0 1 1 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 1 0

G 1 1 0 0 0 1 0 0

H 1 1 0 0 1 0 0 0

25

Adjacency List : Directed Graph

The vertices are stored in a data structure (we’ll see
how in a second)
This structure contains a linked list of edges having a
given source

26

Adjacency List : Undirected Graph

The vertices are stored in a data structure (we’ll see how
in a second)
This structure contains a linked list of edges incident to a
given vertex

27

Graph Classes in structure5

28

Graph Classes in structure5

Why so many?!

• There are two types of graphs: undirected & directed

• There are two implementations: arrays and lists

• We want to be able to avoid large amounts of identical

code in multiple classes

• We abstract out features of implementation common to

both directed and undirected graphs

We’ll tackle array-based graphs first....

29

Vertex and GraphMatrixVertex
• We need to define a Vertex class

• Unlike the Edge class, Vertex class is not public
• Useful Vertex methods:

V label(), boolean visit(),
boolean isVisited(), void reset()

• GraphMatrixVertex class adds one more useful attribute to
Vertex class
• Index of node (int) in adjacency matrix

int index()
• Why do we only need one int to represent index?

• In these slides, we write GMV for GraphMatrixVertex

30

Choosing a Dictionary Structure
• We need a structure that will let us retrieve the index

of a vertex given the vertex label (a dictionary)
• Many choices
• Vector of associations:

• Vector<Association<V, GraphMatrixVertex<V>>>

• Ordered Vector of Associations
• BinarySearchTree of Associations

• Problem (?): We don’t want to allow multiple vertices
with same label.... [Why?]

• We’ll use the Map Interface [Chapter 15]
• Maps require a unique key for each entry

31

Digression : Map Interface
• Methods for Map<K, VAL>

• int size() - returns number of entries in map
• boolean isEmpty() - true iff there are no entries
• boolean containsKey(K key) - true iff key exists in map
• boolean containsValue(VAL val) - true iff val exists at least

once in map
• VAL get(K key) - get value associated with key
• VAL put(K key, VAL val) - insert mapping from key to val,

returns value replaced (old value) or null
• VAL remove(K key) - remove mapping from key to val
• void clear() - remove all entries from map

• We’ll study this more in a week or so.
• For now, see MapDemo.java example for simple use

32

Implementing the Matrix Model

• Abstract class – partially implements Graph
public abstract class GraphMatrix<V,E> implements Graph<V,E>

• This class will implement features common to
directed and undirected graphs

• Instance variables
protected int size; //max size of matrix
protected Object data[][]; //matrix of edges
protected Map<V, GMV<V>> dict; //labels -> vertices
// This is structure5.Map, NOT java.util.Map!
protected List<Integer> freeList; //avail indices
protected boolean directed;

33

GraphMatrix Constructor
(Yes, abstract classes can have constructors!)

protected GraphMatrix(int size, boolean dir) {
this.size = size; // set maximum size
directed = dir; // fix direction of edges

// the following constructs a size x size matrix
// (the “Objects” will be “Edges”)
// (can’t use generics with arrays!)
data = new Object[size][size];

// labelàindex translation table
dict = new Hashtable<V,GraphMatrixVertex<V>>(size);

// put all indices in the free list
freeList = new SinglyLinkedList<Integer>();
for (int row = size-1; row >= 0; row--)

freeList.add(new Integer(row));
}

34

GraphMatrix add()
public void add(V label) {

// if there already, do nothing
if (dict.containsKey(label)) return;

Assert.pre(!freeList.isEmpty(), "Matrix not full");
// allocate a free row and column
int row = freeList.removeFirst().intValue();
// add vertex to dictionary
dict.put(label, new GraphMatrixVertex<V>(label, row));

}

35

GraphMatrix remove()
public V remove(V label) {

// find and extract vertex
GraphMatrixVertex<V> vert;
vert = dict.remove(label);
if (vert == null) return null;
// remove vertex from matrix
int index = vert.index();
// clear row and column entries
for (int row=0; row<size; row++) {

data[row][index] = null;
data[index][row] = null;

}
// add node index to free list
freeList.add(new Integer(index));
return vert.label();

}

36

Neighbors Iterator : GraphMatrix

neighbors Iterator
public Iterator<V> neighbors(V label) {

GraphMatrixVertex<V> vert = dict.get(label);
List<V> list = new SinglyLinkedList<V>();
for (int row=size-1; row>=0; row--) {

Edge<V,E> e = (Edge<V,E>)data[vert.index()][row];
if (e != null)

if (e.here().equals(vert.label()))
list.add(e.there());
else list.add(e.here());

}
return list.iterator();

}

37

GraphMatrixDirected

• Completes the implementation of
GraphMatrix to ensure graph is directed

• GraphMatrixUndirected is very similar…
• How do we implement GraphMatrixDirected?
• We’ll discuss some methods
• Read Ch 16 for complete details…

38

GraphMatrixDirected

• Constructor
public GraphMatrixDirected(int size) {

// pre: size > 0
// post: constructs an empty graph that may be
// expanded to at most size vertices. Graph
// is directed if dir true and undirected
// otherwise

// call GraphMatrix constructor
super(size,true);

}

39

GraphMatrixDirected

• addEdge
// pre: vLabel1 and vLabel2 are labels of existing vertices
public void addEdge(V vLabel1, V vLabel2, E label) {

GraphMatrixVertex<V> vtx1,vtx2;
vtx1 = dict.get(vLabel1);
vtx2 = dict.get(vLabel2);
Edge<V,E> e = new Edge<V,E>(vtx1.label(), vtx2.label(),

label, true);
data[vtx1.index()][vtx2.index()] = e;

}

40

GraphMatrixDirected

• removeEdge
// pre: vLabel1 and vLabel2 are labels of existing vertices
public E removeEdge(V vLabel1, Vlabel2) {

// get indices
int row = dict.get(vLabel1).index();
int col = dict.get(vLabel2).index();
// cache old value
Edge<V,E> e = (Edge<V,E>)data[row][col];
// update matrix
data[row][col] = null;
if (e == null) return null;
else return e.label(); // return old value

}

41

GraphMatrix Efficiency

• Assume Map operations are O(1) (for now)
• |E| = number of edges

• |V| = number of vertices

• Runtime of add, addEdge, getEdge, removeEdge,
remove?

• Space usage?

• Conclusions
• Matrix is good for dense graphs

• Have to commit to maximum # of vertices in advance

42

Efficiency : Assuming Fast Map
GraphMatrix

add O(1)

addEdge O(1)

getEdge O(1)

removeEdge O(1)

remove O(|V|)

space O(|V|2)

43

Adjacency List : Directed Graph

The vertices are stored in an map
Each vertex contains a linked list of edges having a
given source

44

Adjacency List : Undirected Graph

The vertices are stored in a map
Each vertex contains a linked list of edges incident to a
given vertex

45

GraphList

• Rather than keep an adjacency matrix,
maintain an adjacency list of edges at each
vertex (only keep outgoing edges for directed
graphs)

• Support both directed and undirected graphs
(GraphListDirected, GraphListUndirected)

46

Vertex and GraphListVertex
• We use the same Edge class for list-based graphs
• We extend Vertex to include an Edge list
• GraphListVertex class adds to Vertex class
• A Structure to store edges adjacent to the vertex

protected Structure<Edge<V,E>> adjacencies; // adjacent edges
– adjacencies is created as a SinglyLinkedList of edges

• Several methods
public void addEdge(Edge<V,E> e)
public boolean containsEdge(Edge<V,E> e)
public Edge<V,E> removeEdge(Edge<V,E> e)
public Edge<V,E> getEdge(Edge<V,E> e)
public int degree()
// and methods to produce Iterators...

47

GraphListVertex
public GraphListVertex(V key){

super(key); // init Vertex fields
adjacencies = new SinglyLinkedList<Edge<V,E>>();

}

public void addEdge(Edge<V,E> e){
if (!containsEdge(e)) adjacencies.add(e);

}

public boolean containsEdge(Edge<V,E> e){
return adjacencies.contains(e);

}

public Edge<V,E> removeEdge(Edge<V,E> e) {
return adjacencies.remove(e);

}

48

GraphListVertex Iterators
// Iterator for incident edges
public Iterator<Edge<V,E>> adjacentEdges() {

return adjacencies.iterator();
}

// Iterator for adjacent vertices
public Iterator<V> adjacentVertices() {

return new GraphListAIterator<V,E>
(adjacentEdges(), label());

}

GraphListAIterator creates an Iterator over vertices based on
The Iterator over edges produced by adjacentEdges()

49

GraphListAIterator

public GraphListAIterator(Iterator<Edge<V,E>> i, V v) {
edges = (AbstractIterator<Edge<V,E>>)i;
vertex = v;

}

public V next() {
Edge<V,E> e = edges.next();
if (vertex.equals(e.here()))

return e.there();
else { // could be an undirected edge!

return e.here();
}

GraphListAIterator uses two instance variables

protected AbstractIterator<Edge<V,E>> edges;
protected V vertex;

50

GraphListEIterator
GraphListEIterator uses one instance variable

protected AbstractIterator<Edge<V,E>> edges;

GraphListEIterator
•Takes the Map storing the vertices
•Uses it to build a linked list of all edges
•Gets an iterator for this linked list and stores it, using it in its own
methods

51

GraphList

• To implement GraphList, we use the GraphListVertex
(GLV) class

• GraphListVertex class
• Maintain linked list of edges at each vertex

• Instance vars: label, visited flag, linked list of edges

• GraphList abstract class
• Instance vars:

• Map<V,GraphListVertex<V,E>> dict; // label -> vertex
• boolean directed; // is graph directed?

• How do we implement key GL methods?
• GraphList(), add(), getEdge(), …

52

protected GraphList(boolean dir){
dict = new Hashtable<V,GraphListVertex<V,E>>();
directed = dir;

}

public void add(V label) {
if (dict.containsKey(label)) return;
GraphListVertex<V,E> v = new

GraphListVertex<V,E>(label);
dict.put(label,v);

}

public Edge<V,E> getEdge(V label1, V label2) {
Edge<V,E> e = new Edge<V,E> (get(label1),
get(label2), null, directed);
return dict.get(label1).getEdge(e);

}

53

GraphListDirected

• GraphListDirected (GraphListUndirected) implements
the methods requiring different treatment due to
(un)directedness of edges
• addEdge, remove, removeEdge, …

54

// addEdge in GraphListDirected.java
// first vertex is source, second is destination
public void addEdge(V vLabel1, V vLabel2, E label) {

// first get the vertices
GraphListVertex<V,E> v1 = dict.get(vLabel1);
GraphListVertex<V,E> v2 = dict.get(vLabel2);
// create the new edge
Edge<V,E> e = new Edge<V,E>(v1.label(), v2.label(), label, true);
// add edge only to source vertex linked list (aka adjacency list)
v1.addEdge(e);

}

55

public V remove(V label) {

//Get vertex out of map/dictionary
GraphListVertex<V,E> v = dict.get(label);

//Iterate over all vertex labels (called the map “keyset”)
Iterator<V> vi = iterator();
while (vi.hasNext()) {

//Get next vertex label in iterator
V v2 = vi.next();

//Skip over the vertex label we're removing
//(Nodes don't have edges to themselves...)
if (!label.equals(v2)) {

//Remove all edges to "label"
//If edge does not exist, removeEdge returns null
removeEdge(v2,label);

}
}
//Remove vertex from map
dict.remove(label);
return v.label();

}

56

public E removeEdge(V vLabel1, V vLabel2) {

//Get vertices out of map
GraphListVertex<V,E> v1 = dict.get(vLabel1);
GraphListVertex<V,E> v2 = dict.get(vLabel2);

//Create a “temporary” edge connecting two vertices
Edge<V,E> e = new Edge<V,E>(v1.label(), v2.label(), null, true);

//Remove edge from source vertex linked list
e = v1.removeEdge(e);
if (e == null) return null;
else return e.label();

}

