CSCI 136
 Data Structures \&
 Advanced Programming

Lecture 28
 Fall 2019

Instructors: Bill
Sam

Last Time

- Lab 9: Super Lexicon!
- Introduction To Graphs
- Definitions and Properties: Undirected Graphs

Today's Outline

- More on Graphs
- Applications and Problems
- Testing connectedness
- Counting connected components
- Breadth-first and Depth-first search
- Directed Graphs
- Definition and Properties
- Reachability and (Strong) Connectedness
- Graph Data Structures: Preliminaries
- Graph Interface

Reachability and Connectedness

- Def'n: A vertex v in G is reachable from a vertex u in G if there is a path from u to v
- v is reachable from u iff u is reachable from v
- Defn: An undirected graph G is connected if for every pair of vertices u, v in G, v is reachable from u (and vice versa)
- The set of all vertices reachable from v, along with all edges of G connecting any two of them, is called the connected component of v

Operations on Graphs

- What are the basic operations we need to describe algorithms on graphs?
- Given vertices u and v : are they adjacent?
- Given vertex v and edge e, are they incident?
- Given an edge e, get its incident vertices (ends)
- How many vertices are adjacent to v ? (degree of v)
- The vertices adjacent to v are called its neighbors
- Get a list of the vertices adjacent to v
- From which we can get the edges incident with v

Testing Connectedness

- How can we determine whether G is connected?
- Pick a vertex v ; see if every vertex u is reachable from v
- How could we do this?
- Visit the neighbors of v, then visit their neighbors, etc. See if you reach all vertices
- Assume we can mark a vertex as "visited"
- How do we efficiently manage all this visiting?

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count $\leftarrow 0$;
Create empty queue Q ; enqueue v ; mark v as visited; count++
While Q isn't empty current \leftarrow Q.dequeue(); for each unvisited neighbor u of current :
add u to Q ; mark u as visited; count++
return count;

Now compare value returned from BFS(G,v) to size of V

BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u reachable from v.

Proof: We'll show that if u is reachable from v then BFS (G, v) visits u by induction on $d=d(v, u)$

- Base Case: $d=0$. Then $u=v$.
- v is reachable from v and $\operatorname{BFS}(G, v)$ visits v
- Induction Hypothesis: For some $d \geq 0$, if $d(u, v)$
$=\mathrm{d}$ then $\operatorname{BFS}(\mathrm{G}, \mathrm{v})$ visits u .

BFS Theorem

- Induction Step: Assume now that $\mathrm{d}(\mathrm{u}, \mathrm{v})=\mathrm{d}+\mathrm{I}$
- Let $v=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{d}, e_{d+1}, v_{d+1}=u$ be a path of length $\mathrm{d}+\mathrm{l}$ from v to u
- Then $v=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{d}$ is a path of length d from v to v_{d}
- By I.H., v_{d} is visited by $\operatorname{BFS}(\mathrm{G}, \mathrm{v})$ and put in Q
- So v_{d} will be dequeued and all of its unvisited neighbors, including u, will be marked as visited
A similar argument shows that if u is visited by $\operatorname{BFS}(G, v)$ then u is reachable from v

BFS Reflections

- The BFS algorithm can be modified to build a tree T_{v} : the edges connecting a visited vertex to (as yet) unvisited neighbors
- T_{v} is called a BFS tree of G with root v (or from v)
- The vertices of T_{v} are visited in level-order
- Every path in T_{v} from v to a vertex u is a shortest possible path from v to u
- That is, the path has length $\mathrm{d}(\mathrm{v}, \mathrm{u})$

Reachability: Depth-First Search

DFS(G, v) // Do a depth-first search of G starting at v
// pre: all vertices are marked as unvisited
count $\leftarrow 0$;
Create empty stack S; push v; mark v as visited; count++;
While S isn't empty
current \leftarrow S.pop();
for each unvisited neighbor u of current:
add u to S; mark u as visited; count++
return count;

Now compare value returned from DFS(G,v) to size of V

DFS Reflections

- The DFS algorithm traced out a tree different from that produced by BFS
- It still consists of the edges connecting a visited vertex to (as yet) unvisited neighbors
- It is called a DFS tree of G with root v (or from v)
- Vertices are processed in pre-order w.r.t. the tree
- By manipulating the stack differently, we could produce a post-order version of DFS
- And perhaps write DFS recursively....

Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)
Mark vas visited; count $=1$;
for each neighbor u of v :
if u is unvisited:
count += DFS(G,u);
return count;

Is it even clear that this method does what we want?!
Let's prove some facts about it....

What Exactly Does DFS Do?

- Given a graph $G=(V, E)$, a vertex v, let $X \subseteq$ V, where $v \notin X$.
- Assume X are exactly the vertices of V that have been marked as visited
- Claim: DFS(G,v) will visit exactly those unvisited vertices that are in the connected component of $G-X$ that contains v
- $G-X$ is the graph obtained by deleting the vertices of X-and edges using X-from G
- Prove by induction on $|\mathrm{V}-\mathrm{X}|$

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v - Proof: Induction on length d of shortest path from v to w

- Base case: $\mathrm{d}=0$: Then $\mathrm{v}=\mathrm{w} \mathrm{V}$
- Ind. Hyp.: Assume DFS visits all vertices w of distance at most d from v (for some $d \geq 0$).
- Ind. Step: Suppose now that w is distance $d+I$ from v. Consider a path of length $d+I$ from v to w and let u be the next-to-last vertex on the path

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v

- Proof: Induction on length d of shortest path from v to w
- The path is $v=v_{0}, v_{1}, v_{2}, \ldots, v_{d}=u, v_{d+1}=w$
- The edges are implied so not explicitly written!
- By Ind. Hyp., u is visited. At this point, if whas not yet been visited, it will be one of the unvisited vertices on which DFS() is recursively called, so it will then be visited.

Recursive Depth-First Search

Claim: DFS visits only vertices reachable from v

- Idea: Prove by induction on number of times DFS is called that DFS is only called on vertices w reachable from v

Claim: DFS counts correctly the number of vertices reachable from v

- Idea: Induction on number of unvisited vertices reachable from v
- DFS will never be called on same vertex twice

Recursive Depth-First Search

Claim: DFS(G,v) returns the number of unvisited nodes reachable from v
Proof: Uses previous two observations

- DFS visits every node reachable from v
- DFS doesn't visit any node not reachable from v

Directed Graphs

Def'n: In a directed graph $G=(V, E)$, each edge e in E is an ordered pair: $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ vertices: its incident vertices. The source of e is u ; the destination/target is v .

Note: $(u, v) \neq(v, u)$

Directed Graphs

- The (out) neighbors of B are D, G, H: B has outdegree 3
- The in neighbors of B are A, C: B has in-degree 2
- A has in-degree 0: it is a source in G; D has outdegree 0 : it is a sink in G

A walk is still an alternating sequence of vertices and edges

$$
u=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, v_{k-1}, e_{k}, v_{k}=v
$$

but now $e_{i}=\left(v_{i-1}, v_{i}\right)$: all edges point along direction of walk

Directed Graphs

- A, B, H, E, D is a walk from A to D
- It's also a (simple) path
- D, E, H, B, A is not a walk from D to A
- B, G, F, C, B is a (directed) cycle (it's a 4-cycle)
- So is H, E, H (a 2-cycle)

- D is reachable from A (via path A, B, D), but A is not reachable from D
- In fact, every vertex is reachable from A

Directed Graphs

- A BFS of G from A visits every vertex
- A BFS of G from F visits all vertices but A
- A BFS of G from E visits only E, H, D

- Connectivity in directed graphs is more subtle than in undirected graphs!

Directed Graphs

- Vertices u and v are mutually reachable vertices if there are paths from u to v and v to u
- Maximal sets of mutually reachable vertices form the strongly connected components of G

Implementing Graphs

- Involves a number of implementation decisions, depending on intended uses
- What kinds of graphs will be availabe?
- Undirected, directed, mixed
- What underlying data structures will be used?
- What functionality will be provided
- What aspects will be public/protected/private
- We'll focus on popular implementations for undirected and directed graphs (separately)

Graphs in structure5

- We want to store information at vertices and at edges, but we favor vertices
- Let V and E represent the types of information held by vertices and edges respectively
- Interface Graph<V,E> extends Structure<V>
- Vertices are the building blocks; edges depend on them
- Type V holds a label for a (hidden) vertex type
- Type E holds a label for an (available) edge type
- Label: Application-specific data for a vertex/edge

Graphs in structure5

- So, the methods described in the Structure<V> interface are about vertices (but also impact edges: e.g., clear())
- We'll want to add a number of similar methods to provide information about edges, and the graph itself

Recall: Desired Functionality

- What are the basic operations we need to describe algorithms on graphs?
- Given vertices u and v : are they adjacent?
- Given vertex v and edge e, are they incident?
- Given an edge e, get its incident vertices (ends)
- How many vertices are adjacent to v ? (degree of v)
- The vertices adjacent to v are called its neighbors
- Get a list of the neighbors of v (or the edges incident with v)

Graph Interface Methods

- void add(V vtx), V remove(V vtx)
- Add/remove vertex to/from graph
- void addEdge(V vtx I, V vtx2, E edgeLabel),

E removeEdge(V vtxI, V vtx2)

- Add/remove edge between vtxl and vtx2
- boolean containsEdge(V vtx I, V vtx2)
- Returns true iff there is an edge between $v t x I$ and $v t x 2$
- Edge<V,E> getEdge(V vtxI, V vtx2)
- Returns edge between vtx I and vtx 2
- void clear()
- Remove all nodes (and edges) from graph

Graph Interface Methods

- boolean visit(V vertexLabel)
- Mark vertex as "visited" and return previous value of visited flag
- boolean visitEdge(Edge<V,E> e)
- Mark edge as "visited"
- boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)
- Returns true iff vertex/edge has been visited
- Iterator<V> neighbors(V vtxI)
- Get iterator for all neighbors of vtxl
- For directed graphs, out-edges only
- Iterator<V> iterator()
- Get vertex iterator
- void reset()
- Remove visited flags for all nodes/edges

Edge Class

- Graph edges are defined in their own public class
- Edge<V,E>(

```
V vtx1, V vtx2,
E label, boolean directed)
```

- Construct a (possibly directed) edge between two labeled vertices (vtxl->vtx2)
- Useful methods:
label(), here(), there()
setLabel(), isVisited(), isDirected()

Reachability: Breadth-First Traversal

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count $\leftarrow 0$;
Create empty queue Q ; enqueue v ; mark v as visited; count++
While Q isn't empty current \leftarrow Q.dequeue(); for each unvisited neighbor u of current: add u to Q ; mark u as visited; count++
return count;

Now compare value returned from BFS(G,v) to size of V

Breadth-First Traversal

```
int BFS(Graph<V,E> g, V src) {
    Queue<V> todo = new QueueList<V>(); int count = 0;
    g.visit(src); count++;
    todo.enqueue(src);
    while (!todo.isEmpty()) {
        V node = todo.dequeue();
        Iterator<V> neighbors = g.neighbors(node);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisited(next)) {
                    g.visit(next); count++;
                todo.enqueue(next);
            }
        }
    }
    return count;
}
```


Breadth-First Traversal of Edges

```
int BFS(Graph<V,E> g, V src) {
    Queue<V> todo = new QueueList<V>(); int count = 0;
    g.visit(src); count++;
    todo.enqueue(src);
    while (!todo.isEmpty()) {
    V node = todo.dequeue();
    Iterator<V> neighbors = g.neighbors(node);
    while (neighbors.hasNext()) {
        V next = neighbors.next();
        if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
            if (!g.isVisited(next)) {
                g.visit(next); count++;
                todo.enqueue(next);
            }
    }
}
return count;
}
```


Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited //Then call DFS(G,v)
DFS(G, v)
Mark v as visited; count=I;
for each unvisited neighbor u of v :
count += DFS(G,u);
return count;

Recursive Depth-First Search

```
int DFS(Graph<V,E> g, V src) {
        g.visit(src);
        int count = 1;
        Iterator<V> neighbors = g.neighbors(src);
        while (neighbors.hasNext()) {
            V next = neighbors.next();
            if (!g.isVisited(next))
                count += DFS(g, next);
    }
    }
    return count;
}
```


Representing Graphs

- Two standard approaches
- Option I: Array-based (directed and undirected)
- Option 2: List-based (directed and undirected)
- We'll look at both
- Array-based graphs store the edge information in a 2dimensional array indexed by the vertices
- List-based graphs store the edge information in a (Idimensional) array of lists
- The array is indexed by the vertices
- Each array element is a list of edges incident with that vertex

Adjacency Array: Directed Graph

	A	B	C	D	E	F	G	H
A	0	I	I	0	0	0	I	I
B	0	0	0	I	0	0	I	I
C	0	I	0	I	0	0	0	0
D	0	0	0	0	0	0	0	0
E	0	0	0	I	0	0	0	I
F	0	0	I	I	0	0	0	0
G	0	0	0	0	0	I	0	0
H	0	0	0	0	I	0	0	0

Entry (i, j) stores 1 if there is an edge from i to $\mathrm{j} ; 0$ otherwise E.G.: edges(B,C) $=1$ but edges $(C, B)=0$

Adjacency Array: Undirected Graph

	A	B	C	D	E	F	G	H
A	0	I	I	0	0	0	I	I
B	I	0	I	I	0	0	I	I
C	I	I	0	I	0	I	0	0
D	0	I	I	0	I	I	0	0
E	0	0	0	I	0	0	0	I
F	0	0	I	I	0	0	I	0
G	I	I	0	0	0	I	0	0
H	I	I	0	0	I	0	0	0

Entry (i, j) store 1 if there is an edge between i and j ; else 0 E.G.: edges(B,C) = 1 = edges(C,B)

Adjacency List : Directed Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges having a given source

Adjacency List : Undirected Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges incident to a given vertex

Graph Classes in structure5

Interface
Abstract Class
Class

Edge

