CSCI 136
Data Structures &
Advanced Programming

Lecture 28
Fall 2019

Instructors: Bil —— Sam

Last Time

e Lab 9: Super Lexicon!

* Introduction To Graphs
* Definitions and Properties: Undirected Graphs

Today s Outline

* More on Graphs

* Applications and Problems

e Testing connectedness

e Counting connected components
— Breadth-first and Depth-first search

* Directed Graphs

* Definition and Properties

e Reachability and (Strong) Connectedness
e Graph Data Structures: Preliminaries

* Graph Interface

Reachability and Connectedness

Def'n: A vertex v in G is reachable from a
vertex u in G if there is a path fromu to v

v is reachable from u iff u is reachable from v

Def'n: An undirected graph G is connected if
for every pair of vertices u, vin G, v is
reachable from u (and vice versa)

The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

Operations on Graphs

* What are the basic operations we need to
describe algorithms on graphs?
e Given vertices u and v: are they adjacent!
* Given vertex v and edge e, are they incident!
e Given an edge e, get its incident vertices (ends)

* How many vertices are adjacent to v! (degree of v)

* The vertices adjacent to v are called its neighbors

* Get a list of the vertices adjacent to v

* From which we can get the edges incident with v

Testing Connectedness

* How can we determine whether G is
connected?

e Pick a vertex v; see if every vertex u is reachable
from v

e How could we do this?

* Visit the neighbors of v, then visit their neighbors,
etc. See if you reach all vertices

e Assume we can mark a vertex as ‘‘visited”

* How do we efficiently manage all this visiting?

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
Il pre: all vertices are marked as unvisited
count €0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current € Q.dequeue();

for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++

return count;

Now compare value returned from BFS(G,v) to size of V

BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u
reachable from v.

Proof: We’'ll show that if u is reachable from v
then BFS(G,v) visits u by induction on d = d(v,u)
e Base Case:d=0. Thenu =v.

* v is reachable from v and BFS(G,v) visits v

* Induction Hypothesis: For some d = 0, if d(u,v)
= d then BFS(G,v) visits u.

BFS Theorem

* Induction Step: Assume now that d(u,v) = d+1

e Letv=yvy e, V|, €, Vy, «.. , Vg, €441> Vg+] = U be a

path of length d+1 from v to u

e Thenv =vg e, Vv, €, Vy .., V4 is a path of length d
from v to v,

e By LLH., v, is visited by BFS(G,v) and put in Q

* So v4 will be dequeued and all of its unvisited
neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by
BFS(G,v) then u is reachable from v

BFS Reflections

The BFS algorithm can be modified to build a
tree T,: the edges connecting a visited vertex
to (as yet) unvisited neighbors

T, is called a BFS tree of G with root v (or from v)
The vertices of T, are visited in level-order

Every path in T, from v to a vertex u is a
shortest possible path from v to u

e That is, the path has length d(v,u)

Reachability: Depth-First Search

DFS(G, v) // Do a depth-first search of G starting at v
I/ pre: all vertices are marked as unvisited
count €0;
Create empty stack S; push v; mark v as visited; count++;
While S isn’t empty

current € S.pop();

for each unvisited neighbor u of current :

add u to S; mark u as visited; count++

return count;

Now compare value returned from DFS(G,v) to size of V

DFS Reflections

The DFS algorithm traced out a tree different
from that produced by BFS

* |t still consists of the edges connecting a visited
vertex to (as yet) unvisited neighbors

It is called a DFS tree of G with root v (or from v)

Vertices are processed in pre-order w.r.t. the
tree

By manipulating the stack differently, we could
produce a post-order version of DFS

And perhaps write DFS recursively....

Recursive Depth-First Search

/] Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)
Mark v as visited; count = |;
for each neighbor u of v:
if u is unvisited:
count += DFS(G,u);

return count;

Is it even clear that this method does what we want?!
Let’s prove some facts about it....

What Exactly Does DFS Do!?

* Given a graph G = (V, E), a vertex v, let X C
V, where v & X.

* Assume X are exactly the vertices of V that
have been marked as visited

e Claim: DFS(G,v) will visit exactly those
unvisited vertices that are in the connected
component of G — X that contains v

e G — X is the graph obtained by deleting the
vertices of X—and edges using X—from G

* Prove by induction on |V — X|

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v

* Proof: Induction on length d of shortest path
fromvtow
e Basecase:d=0: Thenv=w V

* Ind. Hyp.: Assume DFS visits all vertices w of
distance at most d from v (for some d = 0).

* Ind. Step: Suppose now that w is distance d+|
from v. Consider a path of length d+| from v tow
and let u be the next-to-last vertex on the path

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v

* Proof: Induction on length d of shortest path
fromvtow

* The pathis v =vg, V|, Vo, ce. , Vg = U, Vg4 = W

* The edges are implied so not explicitly written!

* By Ind. Hyp., u is visited. At this point, if w has not
yet been visited, it will be one of the unvisited
vertices on which DFS() is recursively called, so it
will then be visited.

Recursive Depth-First Search

Claim: DFS visits only vertices reachable from v

* |dea: Prove by induction on number of times
DFS is called that DFS is only called on vertices
w reachable from v

Claim: DFS counts correctly the number of
vertices reachable from v

e |dea: Induction on number of unvisited
vertices reachable from v

e DFS will never be called on same vertex twice

Recursive Depth-First Search

Claim: DFS(G,v) returns the number of unvisited
nodes reachable from v
Proof: Uses previous two observations

e DFS visits every node reachable from v

e DFS doesn’t visit any node not reachable from v

Directed Graphs

S Graphics
|

Algorithms
— Theor

Linear Algebra

Compilers

Discrete Math

Programming Languages

Data Structures
Java < .
O ting Syst
Organization —— perating Systems

Def’n: In a directed graph G = (V,E), each edge e in E is an ordered
pair: e = (u,v) vertices: its incident vertices. The source of e is u; the

destination/target is v.

Note: (u,v) # (%,u)

Directed Graphs
o

* The (out) neighbors of B

are D, G, H: B has out- 0"‘

degree 3

* The in neighbors of B are "“
A, C: B has in-degree 2

« Ahasin-degree O:itis a °
source in G; D has out-

degree 0: it is a sink in G 0‘6

A walk is still an alternating sequence of vertices and edges
U=Vy€,V5€,Vy ., Vi € Vk — V

but now e, = (v4,Vv;): all edges point along direction of walk
20

Directed Graphs
o

A, B, H, E, Dis awalk from

Ato D Q"g
It's also a (simple) path

D, E, H, B, Ais not a walk "0‘
from D to A

B. G, F, C, Bis a (directed) o

cycle (it's a 4-cycle)

Sois H, E, H (a 2-cycle) 0‘6

D is reachable from A (via path A, B, D), but A is not
reachable from D
In fact, every vertex is reachable from A

21

Directed Graphs
o

A BFS of G from A visits

every vertex 04"
A BFS of G from F visits all

vertices but A "e‘
A BFS of G from E visits

only E, H, D (2
S
()

Connectivity in directed graphs is more subtle than in
undirected graphs!

22

Directed Graphs

* Vertices u and v are mutually
reachable vertices if there are
paths fromutovandvtou

« Maximal sets of mutually
reachable vertices form the
strongly connected
components of G

-

23

Implementing Graphs

* Involves a number of implementation
decisions, depending on intended uses

* What kinds of graphs will be availabe?

* Undirected, directed, mixed
* What underlying data structures will be used?
* What functionality will be provided
* What aspects will be public/protected/private

* We'll focus on popular implementations for
undirected and directed graphs (separately)

24

Graphs in structure5

* We want to store information at vertices and at
edges, but we favor vertices

* Let V and E represent the types of information held
by vertices and edges respectively

* Interface Graph<V,E> extends Structure<V>

* Vertices are the building blocks; edges depend on them

* Type V holds a label for a (hidden) vertex type
* Type E holds a label for an (available) edge type

* Label: Application-specific data for a vertex/edge

25

Graphs in structure5

e So, the methods described in the Structure<V>
interface are about vertices (but also impact
edges: e.g., clear())

* We'll want to add a number of similar methods
to provide information about edges, and the
graph itself

26

Recall: Desired Functionality

* What are the basic operations we need to
describe algorithms on graphs?

Given vertices u and v: are they adjacent!
Given vertex v and edge e, are they incident?
Given an edge e, get its incident vertices (ends)

How many vertices are adjacent to v! (degree of v)

* The vertices adjacent to v are called its neighbors

Get a list of the neighbors of v (or the edges
incident with v)

27

Graph Interface Methods

void add(V vtx), V remove(V vtx)
* Add/remove vertex to/from graph
void addEdge(V vtx|, V vtx2, E edgelabel),
E removeEdge(V vtxl, V vtx2)
* Add/remove edge between vtx| and vtx2
boolean containskEdge(V vtxl, V vtx2)
e Returns true iff there is an edge between vtx| and vtx2
Edge<V,E> getEdge(V vtxl, V vtx2)
e Returns edge between vtx| and vtx2
void clear()

* Remove all nodes (and edges) from graph

28

Graph Interface Methods

boolean visit(V vertexLabel)
e Mark vertex as “visited” and return previous value of visited flag
boolean visitEdge(Edge<V,E> e)
e Mark edge as “visited”
boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)
e Returns true iff vertex/edge has been visited
Iterator<V> neighbors(V vtxl)
e Get iterator for all neighbors of vtxl|
* For directed graphs, out-edges only
Iterator<V> iterator()
e Get vertex iterator
void reset()
* Remove visited flags for all nodes/edges

29

Edge Class

e Graph edges are defined in their own public class
e Edge<V,E>(V vtxl, V vtx2,
E label, boolean directed)
e Construct a (possibly directed) edge between two labeled
vertices (vtx|->vtx2)

e Useful methods:
label(), here(), there()
setLabel(), isVisited(), isDirected()

30

Reachability: Breadth-First Traversal

BFS(G, v) // Do a breadth-first search of G starting at v
Il pre: all vertices are marked as unvisited
count €0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current € Q.dequeue();

for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++

return count;

Now compare value returned from BFS(G,v) to size of V

31

Breadth-First Traversal

int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) {
g.visit(next); count++;
todo.enqueue(next);

}

return count;

32

Breadth-First Traversal of Edges

int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.isVisited(next)) {
g.visit(next); count++;
todo.enqueue(next);

}

return count;

33

Recursive Depth-First Search

/] Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)
Mark v as visited; count=1;
for each unvisited neighbor u of v:
count += DFS(G,u);

return count;

34

Recursive Depth-First Search

int DFS(Graph<V,E> g, V src) {

g.visit(src);
int count = 1;
Iterator<V> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {

V next = neighbors.next();

if (!g.isVisited(next))

count += DFS(g, next);

}

return count;

35

Representing Graphs

* Two standard approaches

e Option |: Array-based (directed and undirected)
e Option 2: List-based (directed and undirected)
* We'll look at both
* Array-based graphs store the edge information in a 2-
dimensional array indexed by the vertices

e List-based graphs store the edge information in a (I-
dimensional) array of lists
* The array is indexed by the vertices

e Each array element is a list of edges incident with that vertex

36

Adjacency Array: Directed Graph

Als [c[plE [F [G[H (<)

AlO |1 |1 |00 |0 [I |I 0"0
B [o |0 o1 [o]o |1]l

clofit o1 oo oo ‘

plo o [o]o oo [o]o ’e

E o o |o]1 [o]o o]l ()
Flo|o[r]1 [o]oo]o

clofolofofo]1 oo 0‘

Hlo [o o]o |1]o [o]o 0

Entry (i,j) stores 1 if there is an edge from i to j; O otherwise
E.G.: edges(B,C) = 1 but edges(C,B) =0

37

Adjacency Array: Undirected Graph

A|B|C|D|E |F |G|H
Ao |l (I [0 (O[O |I |I
B (I (O (I (I (O[O |I |I
cC(i |rjo {1t (oijf1 (0|0
Do (I (I (O (I [I {0 |O
E |0 O |O (I (O |0 |0 |I
F 10 {0 I (I (OO I |O
G(I |I |]O |0 O (I (OO
Hi|l {lI {0 {0 (Il |[O |0 |O

Entry (i,j) store 1 if there is an edge between i and j; else 0
E.G.: edges(B,C) =1 = edges(C,B)

38

Adjacency List : Directed Graph

A —>» B| > C| >»G| >H
B —>» D| > G| F>H

C —>» B| > D

D

E —>» D| > H

F —>»(C| —>»D

G —>{ F

H —>(E

The vertices are stored in an array V][]
V[] contains a linked list of edges having a given source

39

Adjacency List : Undirected Graph

T (9] - m |w) (@) w >

> B —>» C » G >» H
—> A —>» C —>» D » G —>» H
» A —> B —>» D >» F
> B » C > E » F
» D » H
—» C —>» D —>» G
—>» A —>» B —>» F
» A —>» B » E

The vertices are stored in an array V][]
V[] contains a linked list of edges incident to a given
vertex

40

Graph Classes in structure5

Interface

Graph

GraphMatrix

Abstract Class

Structure

| >< |

AN

GraphMatrixDirected GraphMatrixUndirected

Class

AbstractStructure

GraphlList

GraphlListDirected

Vertex

RN

GraphMatrixVertex

GraphlListVertex

Edge

GraphListUndirected

