
CSCI 136
Data Structures &

Advanced Programming

Lecture 28
Fall 2019

Instructors: Bill Sam

2

Last Time

• More on Graphs
• Applications and Problems

• Testing connectedness
• Counting connected components

• Breadth-first search
• Depth-first search

– And recursive depth-first search

3

Today’s Outline
• Directed Graphs (from Lecture 27)
• Definition and Properties
• Reachability and (Strong) Connectedness

• Graph Data Structures: Implementation
• Graph Interface (from Lecture 27)
• Adjacency Array Implementation Basic Concepts
• Adjacency List Implementation Basic Concepts

• Adjacency Array Implementation Details

4

Implementing Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
// post: return number of visited vertices
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++
return count;

5

Breadth-First Search
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}

6

Breadth-First Search of Edges
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}

7

Recursive Depth-First Traversal

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count=1;
for each unvisited neighbor u of v:

count += DFS(G,u);
return count;

8

Recursive Depth-First Traversal
int DFS(Graph<V,E> g, V src) {

g.visit(src);
int count = 1;
Iterator<V> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next))

count += DFS(g, next);
}

}
return count;

}

9

Representing Graphs
• Two standard approaches

• Option 1: Array-based (directed and undirected)

• Option 2: List-based (directed and undirected)

• We’ll look at both
• Array-based graphs store the edge information in a 2-

dimensional array indexed by the vertices
• List-based graphs store the edge information in a (1-

dimensional) array of lists
• The array is indexed by the vertices

• Each array element is a list of edges incident with that vertex

10

Adjacency Array: Directed Graph

Entry (i,j) stores 1 if there is an edge from i to j; 0 otherwise
E.G.: edges(B,C) = 1 but edges(C,B) = 0

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 0 0 0 1 0 0 1 1

C 0 1 0 1 0 0 0 0

D 0 0 0 0 0 0 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 0 0

G 0 0 0 0 0 1 0 0

H 0 0 0 0 1 0 0 0

11

Adjacency Array: Undirected Graph

Entry (i,j) store 1 if there is an edge between i and j; else 0
E.G.: edges(B,C) = 1 = edges(C,B)

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 1 0 1 1 0 0 1 1

C 1 1 0 1 0 1 0 0

D 0 1 1 0 1 1 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 1 0

G 1 1 0 0 0 1 0 0

H 1 1 0 0 1 0 0 0

12

Adjacency List : Directed Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges having a given source

13

Adjacency List : Undirected Graph

The vertices are stored in an array V[]
V[] contains a linked list of edges incident to a given
vertex

14

Graph Classes in structure5

15

Graph Classes in structure5

Why so many?!

• There are two types of graphs: undirected & directed

• There are two implementations: arrays and lists

• We want to be able to avoid large amounts of identical

code in multiple classes

• We abstract out features of implementation common to

both directed and undirected graphs

We’ll tackle array-based graphs first....

16

Adjacency Array: Directed Graph

Challenges
•Can’t use Objects as array indices
•How does deleting a vertex work?!

A B C D E F G H

A 0 1 1 0 0 0 1 1

B 0 0 0 1 0 0 1 1

C 0 1 0 1 0 0 0 0

D 0 0 0 0 0 0 0 0

E 0 0 0 1 0 0 0 1

F 0 0 1 1 0 0 0 0

G 0 0 0 0 0 1 0 0

H 0 0 0 0 1 0 0 0

17

Vertex and GraphMatrixVertex
• We need to define a Vertex class

• Unlike the Edge class, Vertex class is not public
• Useful Vertex methods:

V label(), boolean visit(),
boolean isVisited(), void reset()

• GraphMatrixVertex class adds one more useful attribute to
Vertex class
• Index of node (int) in adjacency matrix

int index()
• Why do we only need one int to represent index?

18

Choosing a Dictionary Structure
• We need a structure that will let us retrieve the index

of a vertex given the vertex label (a dictionary)
• Many choices
• Vector of associations:

• Vector<Association<V, GraphMatrixVertex<V>>>

• Ordered Vector of Associations
• BinarySearchTree of Associations

• Problem: We don’t want to allow multiple vertices
with same label.... [Why?]

• We’ll use the Map Interface [Chapter 15]
• Maps require a unique key for each entry

19

Digression : Map Interface

• Methods for Map<K, VAL>
• int size() - returns number of entries in map
• boolean isEmpty() - true iff there are no entries
• boolean containsKey(K key) - true iff key exists in map
• boolean containsValue(VAL val) - true iff val exists at least

once in map
• VAL get(K key) - get value associated with key
• VAL put(K key, VAL val) - insert mapping from key to val,

returns value replaced (old value) or null
• VAL remove(K key) - remove mapping from key to val
• void clear() - remove all entries from map

• We’ll study this more in a week or so....

