CSCI 136
Data Structures &
Advanced Programming

Lecture 28

Fall 2019 —

Instructors:  BIll Sam

\_



Last Time

* More on Graphs

* Applications and Problems
e Testing connectedness
e Counting connected components
* Breadth-first search
* Depth-first search

— And recursive depth-first search



Today s Outline

* Directed Graphs (from Lecture 27)

e Definition and Properties

e Reachability and (Strong) Connectedness

e Graph Data Structures: Implementation

* Graph Interface (from Lecture 27)

* Ad]
* Ad]

* Ad]

acency Array Implementation Basic Concepts
acency List Implementation Basic Concepts

acency Array Implementation Details



Implementing Breadth-First Search

BIS(G, v) /7 Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
/7 post: return number of visited vertices
count €< 0:
Create empty queue (J; enqueue v; mark v as visited: count++
While Q isn t empty

current < ().dequeue();

Jor each unvisited neighbor u of current :

add u to Q; mark u as vistted: count++
relurn count:



Breadth-First Search

int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) {
g.visit(next); count++;
todo.enqueue(next);

}

return count;



Breadth-First Search of Edges

int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.isVisited(next)) {
g.visit(next); count++;
todo.enqueue(next);

}

return count;



Recursive Depth-First Traversal

/7 Before first call to DFS, set all veruces to unvisited
//Then call DFS(G,v)
DFS(G, v)
Mark v as vistted: count=1;
Jor each unvisited neighbor u of v:
count +=DFES(G,uw);

relurn count;



Recursive Depth-First Traversal

int DFS( Graph<V,E> g, V src ) {

g.visit(src);
int count = 1;
Iterator<V> neighbors = g.neighbors(src);
while (neighbors.hasNext()) {

V next = neighbors.next();

if (!g.isVisited(next))

count += DFS(g, next);
}
}

return count;

}



Representing Graphs

* Two standard approaches

e Option |: Array-based (directed and undirected)
e Option 2: List-based (directed and undirected)
* We'll look at both
* Array-based graphs store the edge information in a 2-
dimensional array indexed by the vertices

e List-based graphs store the edge information in a (I-
dimensional) array of lists
* The array is indexed by the vertices

e Each array element is a list of edges incident with that vertex



Adjacency Array: Directed Graph

Als [c[plE [F [G[H (<)

AlO |1 |1 |00 |0 [I |I 0"0
B [o |0 o1 [o]o |1 ]l

clofit o1 oo oo ‘

plo o [o]o oo [o]o ’e

E o o |o]1 [o]o o]l ()
Flo|o[r]1 [o]oo]o

clofolofofo]1 oo 0‘

Hlo [o o ]o |1 ]o [o]o 0

Entry (i,j) stores 1 if there is an edge from i to j; O otherwise
E.G.: edges(B,C) = 1 but edges(C,B) =0



Adjacency Array: Undirected Graph

A|B|C|D|E |F |G|H
Ao |l (I [0 (O[O |I |I
B (I (O (I (I (O[O |I |I
cC(i |rjo {1t (oijf1 (0|0
Do (I (I (O (I [I {0 |O
E |0 O |O (I (O |0 |0 |I
F 10 {0 I (I (OO I |O
G(I |I |]O |0 O (I (OO
Hi|l {lI {0 {0 (Il |[O |0 |O

Entry (i,j) store 1 if there is an edge between i and j; else 0
E.G.: edges(B,C) =1 = edges(C,B)




Adjacency List : Directed Graph

A —>» B| > C| >»G| >H
B —>» D| > G| F>H

C —>» B| > D

D

E —>» D| > H

F —>»(C| —>»D

G —>{ F

H —>( E

The vertices are stored in an array V][]
V[] contains a linked list of edges having a given source




Adjacency List : Undirected Graph

T (9] - m |w) (@) w >

> B —>» C » G >» H
—> A —>» C —>» D » G —>» H
» A —> B —>» D >» F
> B » C > E » F
» D » H
—» C —>» D —>» G
—>» A —>» B —>» F
» A —>» B » E

The vertices are stored in an array V][]
V[] contains a linked list of edges incident to a given
vertex




Graph Classes in structure5

Interface

Graph

GraphMatrix

Abstract Class

Structure

| >< |

AN

GraphMatrixDirected GraphMatrixUndirected

Class

AbstractStructure

GraphlList

GraphlListDirected

Vertex

RN

GraphMatrixVertex

GraphlListVertex

Edge

GraphListUndirected




Graph Classes in structure5

Why so many?!

e There are two types of graphs: undirected & directed

e There are two implementations: arrays and lists

 We want to be able to avoid large amounts of identical
code in multiple classes

 We abstract out features of implementation common to

both directed and undirected graphs

WEe'll tackle array-based graphs first....



Adjacency Array: Directed Graph

A|B |C|D|E |F |G |H °
A0 |l |1 (0|0 |0 |1l [I 0"‘
B|(O |0 |0 [I |0 ]|O[I |I
clo |1 |o]lI |00 |0 |O ‘
Do |0 |0 |0 |0 |0 |[O]O ’e
E|(0 |0 |0 |[I |0 ]|O [O]] ﬂ
Flo|o |l [I |o]|o|0]O
Ggloolofo]o]1 [o]o 0‘
H|{o|o|o|o ]I |0 |0]O G
Challenges

*Can’t use Objects as array indices
How does deleting a vertex work?!



Vertex and GraphMatrixVertex

* We need to define a Vertex class
* Unlike the Edge class, Vertex class is nhot public

e Useful Vertex methodes:

V label(), boolean visit(),
boolean isVisited(), void reset()

e GraphMatrixVertex class adds one more useful attribute to

Vertex class

* Index of node (int) in adjacency matrix
int index()

 Why do we only need one int to represent index!?



Choosing a Dictionary Structure

We need a structure that will let us retrieve the index
of a vertex given the vertex label (a dictionary)

Many choices

* Vector of associations:
* Vector<Association<V, GraphMatrixVertex<V>>>

e Ordered Vector of Associations
* BinarySearchTree of Associations

Problem: We don’t want to allow multiple vertices
with same label.... [Why?]

We'll use the Map Interface [Chapter |5]
* Maps require a unique key for each entry



Digression : Map Interface

e Methods for Map<K, VAL>

int size() - returns number of entries in map
boolean isEmpty() - true iff there are no entries
boolean containsKey(K key) - true iff key exists in map

boolean containsValue(VAL val) - true iff val exists at least
once in map

VAL get(K key) - get value associated with key

VAL put(K key, VAL val) - insert mapping from key to val,
returns value replaced (old value) or null

VAL remove(K key) - remove mapping from key to val
void clear() - remove all entries from map

* WEe'll study this more in a week or so....



