CSCI 136 Data Structures & Advanced Programming

Lecture 27 Fall 2019 Instructors: Bill Sam

Last Time

- Lab 9: Super Lexicon!
- AVL trees

Today's Outline

- Red-black trees
- Graphs

Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness

- Each node is colored red or black
- Coloring satisfies these rules
 - All empty trees are black
 - We consider them to be the leaves of the tree
 - Children of red nodes are black
 - All paths from a given node to it's descendent leaves have the same number of black nodes
 - This is called the *black height* of the node

Red-Black Trees

- The coloring rules lead to the following result
- Proposition: No leaf has depth more than twice that of any other leaf.
- This in turn can be used to show
- Theorem: A Red-Black tree with n internal nodes has height satisfying $h \le 2\log(n+1)$
 - Note: The tree will have exactly n+1 (empty) leaves
 - since each internal node has two children

Red-Black Trees

- Theorem: A Red-Black tree with n internal nodes has height satisfying $h \le 2\log(n+1)$
- Proof sketch: Note: we count empty tree nodes!
- If root is red, recolor it black.
- Now merge red children into (black) parents
 - Now n' \leq n nodes and height h' \geq h/2
- New tree has all children with degree 2, 3, or 4
 - All leaves have depth exactly h' and there are n+1 leaves

• So
$$n + 1 \ge 2^{h'}$$
, so $\log_2(n + 1) \ge h' \ge \frac{h}{2}$

• Thus $2 \log_2(n+1) \ge h$

Corollary: R-B trees with n nodes have height O(log n)

Red-Black Trees: Insert

- Series of rules such as: "if my parent is red and my uncle is black and I am a right child of my parent, rotate me to the left. Then, rotate my parent to the right, color it black, and color its new children red."
- This works. We won't go over it in detail. The Wikipedia article on this is excellent
- Deletes are significantly worse

Splay Trees

Splay trees are self-adjusting binary trees

- Each time a node is accessed, it is moved to root position via rotations
- No metadata at all. Just rotate up each element you access
- 2 rules to rotate up; that's it

Splay Trees

Splay trees are self-adjusting binary trees

- Each time a node is accessed, it is moved to root position via rotations
- No guarantee of balance (or shallow height)
- But good *amortized* performance

Theorem: Any set of m operations (add, remove, contains, get) on an n-node splay tree take at most O(m log n) time.

• "As good" as an AVL or Red-Black Tree!

Splay Tree Rotations

Right Zig-Zig Rotation (left version too)

Right Zig-Zag Rotation (left version too)

Dynamic Optimality

 Conjecture: For any sequence of access operations, if the best possible Binary Search Tree takes X operations, then a splay tree takes O(X) operations

 Essentially: keeping no metadata, and with no knowledge of the future, splay trees do as well as a perfect tree that knows the whole sequence in advance

Dynamic Optimality

 Conjecture: For any sequence of access operations, if the best possible Binary Search Tree takes X operations, then a splay tree takes O(X) operations

- One consequence would be: splay trees can handle stack or queue operations in O(I) average operations like a DLL
- Recent progress by Levy and Tarjan in 2019

Dynamic Optimality

• Some really cool math in this area

Trees: What to Know

- Time for lookup, insert, delete in AVL tree? In Red-black tree?
- How do we adjust the structure of a tree?
 - Related: how do we move elements to maintain balance?
- How does an AVL tree maintain balance?
 What must it keep track of?
- How does a red-black tree maintain balance?
 What must it keep track of?

Graphs Describe the World

- Transportation Networks
- Communication Networks
- Molecular structures
- Dependency structures
- Scheduling
- Matching
- Graphics Modeling

Nodes = subway stops; Edges = track between stops

Nodes = cities; Edges = rail lines connecting cities

Note: Connections in graph matter, not precise locations of nodes

Word Game

CS Pre-requisite Structure (subset)

Nodes = courses; Edges = prerequisites ***

Wire-Frame Models

Basic Definitions & Concepts

Def'n: An undirected graph G = (V,E) consists of two sets

•V : the vertices of G, and E : the edges of G

•Each edge e in E is defined by a set of two vertices: its incident vertices. We write $e = \{u, v\}$ and say that u and v are *adjacent*.

Walking Along a Graph

 A walk from u to v in a graph G = (V,E) is an alternating sequence of vertices and edges

 $u = v_0, e_1, v_1, e_2, v_2, ..., v_{k-1}, e_k, v_k = v$

such that each $e_i = \{v_i, v_{i+1}\}$ for i = 1, ..., k

- Note a walk starts and ends on a vertex
- If no edge appears more than once then the walk is called a *path*
- If no vertex appears more than once then the walk is a simple path

Walking In Circles

• A closed walk in a graph G = (V,E) is a <u>walk</u> $v_0, e_1, v_1, e_2, v_2, ..., v_{k-1}, e_k, v_k$

such that each $v_0 = v_k$

- A circuit is a <u>path</u> where v₀ = v_k
 No repeated edges
- A cycle is a simple path where v₀ = v_k
 No repeated vertices (uhm, except for v₀!)
- The length of any of these is the number of edges in the sequence

Little Tiny Theorems

- If there is a walk from u to v, then there is a walk from v to u.
- If there is a walk from u to v, then there is a path from u to v (and from v to u)
- If there is a path from u to v, then there is a simple path from u to v (and v to u)
- Every circuit through v contains a cycle through v
- Not every closed walk through v contains a cycle through v! [Try to find an example!]

Another Useful Graph Fact

- Degree of a vertex v
 - Number of edges incident to v
 - Denoted by deg(v)
- Thm: For any graph G = (V, E)

$$\sum_{v \in V} \deg(v) = 2 |E|$$

where |E| is the number of edges in G

- Proof Hint: Induction on |E|: How does removing an edge change the equation?
 - Or: Count pairs (v,e) where v is incident with e

Reachability and Connectedness

- Def'n: A vertex v in G is reachable from a vertex u in G if there is a path from u to v
- v is reachable from u *iff* u is reachable from v
- Def'n: An undirected graph G is connected if for every pair of vertices u, v in G, v is reachable from u (and vice versa)
- The set of all vertices reachable from v, along with all edges of G connecting any two of them, is called the *connected component of v*

Basic Graph Algorithms

- We'll look at a number of graph algorithms
 - Connectedness: Is G connected?
 - If not, how many connected components does G have?
 - Cycle testing: Does G contain a cycle?
 - Does G contain a cycle through a given vertex?
 - If the edges of G have costs:
 - What is the cheapest subgraph connecting all vertices
 - Called a connected, spanning subgraph
 - What is a cheapest path from u to v?
 - And more....

Operations on Graphs

- What are the basic operations we need to describe algorithms on graphs?
 - Given vertices u and v: are they adjacent?
 - Given vertex v and edge e, are they incident?
 - Given an edge e, get its incident vertices (ends)
 - How many vertices are adjacent to v? (degree of v)
 - The vertices adjacent to v are called its neighbors
 - Get a list of the vertices *adjacent* to v
 - From which we can get the edges *incident* with v

Testing Connectedness

- How can we determine whether G is connected?
 - Pick a vertex v; see if every vertex u is reachable from v
- How could we do this?
 - Visit the neighbors of v, then visit their neighbors, etc. See if you reach all vertices

• Assume we can mark a vertex as "visited"

• How do we efficiently manage all this visiting?

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v

// pre: all vertices are marked as unvisited

count $\leftarrow 0;$

Create empty queue Q; enqueue v; mark v as visited; count++ While Q isn't empty

current ←Q.dequeue();

for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++

return count;

Now compare value returned from BFS(G,v) to size of V

BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u reachable from v.

Proof: We'll show that if u is reachable from v then BFS(G,v) visits u by induction on d = d(v,u)

- Base Case: d = 0. Then u = v.
 - v is reachable from v and BFS(G,v) visits v
- Induction Hypothesis: For some $d \ge 0$, if d(u,v) = d then BFS(G,v) visits u.

BFS Theorem

- Induction Step: Assume now that d(u,v) = d+1
 - Let v = v₀, e₁, v₁, e₂, v₂, ..., v_d, e_{d+1}, v_{d+1} = u be a path of length d+1 from v to u
 - Then $v = v_0$, e_1 , v_1 , e_2 , v_2 , ..., v_d is a path of length d from v to v_d
 - By I.H., v_d is visited by BFS(G,v) and put in Q
 - So v_d will be dequeued and all of its unvisited neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by BFS(G,v) then u is reachable from v

BFS Reflections

- The BFS algorithm traced out a tree T_v: the edges connecting a visited vertex to (as yet) unvisited neighbors
- T_v is called a BFS tree of G with root v (or from v)
- The vertices of T_v are visited in level-order
- Every path in T_v from v to a vertex u is a shortest possible path from v to u
 - That is, the path has length d(v,u)

Reachability: Depth-First Search

DFS(G, v) // Do a depth-first search of G starting at v // pre: all vertices are marked as unvisited count $\leftarrow 0$;

Create empty stack S; push v; mark v as visited; count++; While S isn't empty

current ←S.pop();

for each unvisited neighbor u of current :

add u to S; mark u as visited; count++

return count;

Now compare value returned from DFS(G,v) to size of V

DFS Reflections

- The DFS algorithm traced out a tree different from that produced by BFS
 - It still consists of the edges connecting a visited vertex to (as yet) unvisited neighbors
- It is called a DFS tree of G with root v (or from v)
- Vertices are processed in pre-order w.r.t. the tree
- By manipulating the stack differently, we could produce a post-order version of DFS
- And perhaps write DFS recursively....

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)

DFS(G, v)

```
Mark v as visited; count = I;
for each unvisited neighbor u of v:
count += DFS(G,u);
```

return count;

Is it even clear that this method does what we want?!

Let's prove some facts about it....

What Exactly Does DFS Do?

- Given a graph G = (V, E), a vertex v, let X ⊆
 V, where v ∉ X.
- Assume X are exactly the vertices of V that have been marked as visited
- Claim: DFS(G,v) will visit exactly those vertices that are in the connected component of G – X that contains v
 - G X is the graph obtained by deleting the vertices of X–and edges using X–from G
 - Prove by induction on |V X|

Claim: DFS visits all vertices w reachable from v •Proof: Induction on length d of shortest path from v to w

- Base case: d = 0: Then $v = w \checkmark$
- Ind. Hyp.: Assume DFS visits all vertices w of distance at most d from v (for some d >= 0).
- Ind. Step: Suppose now that w is distance d+I from v. Consider a path of length d+I from v to w and let u be the next-to-last vertex on the path

Claim: DFS visits all vertices w reachable from v

- Proof: Induction on length d of shortest path from v to w
 - The path is $v = v_0, v_1, v_2, ..., v_d = u, v_{d+1} = w$
 - The edges are implied so not explicitly written!
 - By Ind. Hyp., u is visited. At this point, if w has not yet been visited, it will be one of the unvisited vertices on which DFS() is recursively called, so it will then be visited.

Claim: DFS visits only vertices reachable from v

- Idea: Prove by induction on number of times
 DFS is called that DFS is only called on vertices
 w reachable from v
- Claim: DFS counts correctly the number of vertices reachable from v
- Idea: Induction on number of unvisited vertices reachable from v
 - DFS will never be called on same vertex twice

Claim: DFS(G,v) returns the number of unvisited nodes reachable from v

Proof: Uses previous two observations

- DFS visits every node reachable from v
- DFS doesn't visit any node *not* reachable from v

Def'n: In a directed graph G = (V,E), each edge e in E is an ordered pair: e = (u,v) vertices: its incident vertices. The source of e is u; the destination/target is v.

Note: (u,v) **≠ (**v,u)

- The (out) neighbors of B are D, G, H: B has outdegree 3
- The in neighbors of B are A, C: B has in-degree 2
- A has in-degree 0: it is a source in G; D has outdegree 0: it is a sink in G

A walk is still an alternating sequence of vertices and edges $u = v_0, e_1, v_1, e_2, v_2, ..., v_{k-1}, e_k, v_k = v$ but now $e_i = (v_{i-1}, v_i)$: all edges *point along direction* of walk

- A, B, H, E, D is a walk from A to D
- It's also a (simple) path
- D, E, H, B, A is *not* a walk from D to A
- B, G, F, C, B is a (directed) cycle (it's a 4-cycle)
- So is H, E, H (a 2-cycle)

- D is reachable from A (via path A, B, D), but A is not reachable from D
- In fact, every vertex is reachable from A

- A BFS of G from A visits every vertex
- A BFS of G from F visits all vertices but A
- A BFS of *G* from E visits only E, H, D

 Connectivity in directed graphs is more subtle than in undirected graphs!

- Vertices u and v are *mutually reachable* vertices if there are paths from u to v and v to u
- Maximal sets of mutually reachable vertices form the strongly connected components of G

Implementing Graphs

- Involves a number of implementation decisions, depending on intended uses
 - What kinds of graphs will be availabe?
 - Undirected, directed, mixed
 - What underlying data structures will be used?
 - What functionality will be provided
 - What aspects will be public/protected/private
- We'll focus on popular implementations for undirected and directed graphs (separately)

Graphs in structure5

- We want to store information at vertices and at edges, but we favor vertices
 - Let V and E represent the types of information held by vertices and edges respectively
 - Interface Graph<V,E> extends Structure<V>
 - Vertices are the building blocks; edges depend on them
- Type V holds a *label* for a (hidden) vertex type
- Type E holds a *label* for an (available) edge type
 - Label: Application-specific data for a vertex/edge

Graphs in structure5

- So, the methods described in the Structure<V> interface are about vertices (but also impact edges: e.g., clear())
- We'll want to add a number of similar methods to provide information about edges, and the graph itself

Recall: Desired Functionality

- What are the basic operations we need to describe algorithms on graphs?
 - Given vertices u and v: are they adjacent?
 - Given vertex v and edge e, are they incident?
 - Given an edge e, get its incident vertices (ends)
 - How many vertices are adjacent to v? (degree of v)
 - The vertices adjacent to v are called its neighbors
 - Get a list of the neighbors of v (or the edges incident with v)

Graph Interface Methods

- void add(V vtx), V remove(V vtx)
 - Add/remove vertex to/from graph
- void addEdge(V vtx1, V vtx2, E edgeLabel),

E removeEdge(V vtx1, V vtx2)

- Add/remove edge between vtx1 and vtx2
- boolean containsEdge(V vtx1, V vtx2)
 - Returns true iff there is an edge between vtx1 and vtx2
- Edge<V,E> getEdge(V vtx1, V vtx2)
 - Returns edge between vtx1 and vtx2
- void clear()
 - Remove all nodes (and edges) from graph

Graph Interface Methods

- boolean visit(V vertexLabel)
 - Mark vertex as "visited" and return previous value of visited flag
- boolean visitEdge(Edge<V,E> e)
 - Mark edge as "visited"
- boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)
 - Returns true iff vertex/edge has been visited
- Iterator<V> neighbors(V vtx I)
 - Get iterator for all neighbors of vtx l
 - For directed graphs, out-edges only
- Iterator<V> iterator()
 - Get vertex iterator
- void reset()
 - Remove visited flags for all nodes/edges

Edge Class

- Graph edges are defined in their own public class
 - Edge<V,E>(V vtx1, V vtx2,

E label, boolean directed)

- Construct a (possibly directed) edge between two labeled vertices (vtx1->vtx2)
- Useful methods:

```
label(), here(), there()
setLabel(), isVisited(), isDirected()
```

Reachability: Breadth-First Traversal

BFS(G, v) // Do a breadth-first search of G starting at v // pre: all vertices are marked as unvisited

count $\leftarrow 0$;

Create empty queue Q; enqueue v; mark v as visited; count++ While Q isn't empty current \leftarrow Q.dequeue();

for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++

return count;

Now compare value returned from BFS(G,v) to size of V

Breadth-First Traversal

```
int BFS(Graph<V,E> g, V src) {
  Queue<V> todo = new QueueList<V>(); int count = 0;
  g.visit(src); count++;
  todo.enqueue(src);
 while (!todo.isEmpty()) {
   V node = todo.dequeue();
    Iterator<V> neighbors = g.neighbors(node);
   while (neighbors.hasNext()) {
      V next = neighbors.next();
       if (!g.isVisited(next)) {
          g.visit(next); count++;
         todo.enqueue(next);
       }
    }
  }
  return count;
```

}

Breadth-First Traversal of Edges

```
int BFS(Graph<V,E> g, V src) {
 Queue<V> todo = new QueueList<V>(); int count = 0;
 g.visit(src); count++;
 todo.enqueue(src);
 while (!todo.isEmpty()) {
   V node = todo.dequeue();
   Iterator<V> neighbors = g.neighbors(node);
   while (neighbors.hasNext()) {
      V next = neighbors.next();
      if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
      if (!g.isVisited(next)) {
         g.visit(next); count++;
         todo.enqueue(next);
       }
    }
  }
 return count;
```

}