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Last Time

e Lab 9: Super Lexicon!
* AVL trees



Today s Outline

e Red-black trees

* Graphs



Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness
* Each node is colored red or black

* Coloring satisfies these rules
* All empty trees are black
* We consider them to be the leaves of the tree
e Children of red nodes are black

* All paths from a given node to it’s descendent leaves
have the same number of black nodes
 This is called the black height of the node



A Red-Black Tree

(from Wikipedia.org)
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Red-Black Trees

The coloring rules lead to the following result

Proposition: No leaf has depth more than twice
that of any other leaf.

This in turn can be used to show

Theorem: A Red-Black tree with n internal nodes
has height satisfying h < 2log(n + 1)

* Note: The tree will have exactly n+| (empty) leaves

e since each internal node has two children



Red-Black Trees

Theorem: A Red-Black tree with n internal nodes has
height satisfying h < 2log(n + 1)

Proof sketch: Note: we count empty tree nodes!

* |f root is red, recolor it black.

* Now merge red children into (black) parents
* Now n’ < n nodes and height h’ = h/2
* New tree has all children with degree 2, 3, or 4

e All leaves have depth exactly h’ and there are n+1 leaves

h

eSon+1= 2" solog,(n+1) = h’ZE

e Thus2log,(n+1) = h
Corollary: R-B trees with n nodes have height O(log n)



Red-Black Trees: Insert

e Series of rules such as: “if my parent is red
and my uncle is black and | am a right child of
my parent, rotate me to the left. Then, rotate
my parent to the right, color it black, and
color its new children red.”

* This works. We won'’t go over it in detail.
The Wikipedia article on this is excellent

* Deletes are significantly worse



Splay Trees

Splay trees are self-adjusting binary trees

e Each time a node is accessed, it is moved to
root position via rotations

* No metadata at all. Just rotate up each element
you access

* 2 rules to rotate up; that’s it



Splay Trees

Splay trees are self-adjusting binary trees

e Each time a node is accessed, it is moved to
root position via rotations

* No guarantee of balance (or shallow height)
* But good amortized performance

Theorem: Any set of m operations (add, remove,

contains, get) on an n-node splay tree take at
most O(m log n) time.

* “As good” as an AVL or Red-Black Tree!



Splay Tree Rotations

Right Zig-Zig Rotation (left version too)




Dynamic Optimality

* Conjecture: For any sequence of access
operations, if the best possible Binary Search
Tree takes X operations, then a splay tree

takes O(X) operations

* Essentially: keeping no metadata, and with no
knowledge of the future, splay trees do as well
as a perfect tree that knows the whole
sequence in advance



Dynamic Optimality

* Conjecture: For any sequence of access
operations, if the best possible Binary Search
Tree takes X operations, then a splay tree
takes O(X) operations

* One consequence would be: splay trees can
handle stack or queue operations in O(l)
average operations like a DLL

* Recent progress by Levy and Tarjan in 2019



Dynamic Optimality

* Some really cool math in this area
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Trees: What to Know

Time for lookup, insert, delete in AVL tree? In
Red-black tree!?
How do we adjust the structure of a tree!

e Related: how do we move elements to maintain
balance!?

How does an AVL tree maintain balance?
What must it keep track of?

How does a red-black tree maintain balance?
What must it keep track of?



Graphs Describe the World

Transportation Networks
Communication Networks
Molecular structures
Dependency structures
Scheduling

Matching

Graphics Modeling
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Nodes = subway stops; Edges = track between stops



Seattle.

Portland'j

SF |

)

LA

_ Dallas } - AEROR

Nodes = cities; Edges = rail lines connecting cities



Portland Seattle Boston

r - :
Denver Chicagc
SF ‘ .
NY
LA ©® ® :
Dallas Atlanta

Note: Connections in graph matter, not precise locations of nodes
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SRI

STAN

UCLA

Internet (~1972)
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Internet (~1998)
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OAD

Word Game

CORD

WOLD

WARD

A

ony—or



CS Pre-requisite Structure (subset)

Al

Algorithms

/.

»

Discrete Math Theory of comp. » Compilers

Data Structures :
Programming Languages

Java
Operating Systems
Organization

n— Graphics

Nodes = courses; Edges = prerequisites ***
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Wire-Frame Models
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Basic Definitions & Concepts

Seq;ﬂg Bgsan
Portland F
SF Denver Chicago
LA ® o NY$
Dallas Atlanta

Def’n: An undirected graph G = (V,E) consists of two sets
*V : the vertices of G, and E : the edges of G

*Each edge e in E is defined by a set of two vertices: its incident
vertices. Ve write e = {u,v} and say that u and v are adjacent.
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Walking Along a Graph

A walk from u to v in a graph G = (V,E) is an
alternating sequence of vertices and edges

u-= Yo, €15 Vs € Vo wee sy Vi €10 Vi -V

such that each e, ={v,, v, }fori=1, ..,k
Note a walk starts and ends on a vertex

If no edge appears more than once then
the walk is called a path

If no vertex appears more than once then
the walk is a simple path
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Walking In Circles

* A closed walk in a graph G = (V,E) is a walk

Vor €15 V5 €2, V2, ey Vs €16 Vi

such that each v, = v,

* A circuit is a path where v, = v,
*No repeated edges

* A cycle is a simple path where v, = v,
*No repeated vertices (uhm, except for v,!)

* The length of any of these is the number of
edges in the sequence
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Little Tiny Theorems

nere is a walk from u to v, then there is a
k from v to u.

nere is a walk from u to v, then there is a

path from u to v (and from v to u)

If there is a path from u to v, then there is a
simple path from u to v (and v to u)

Every circuit through v contains a cycle
through v

Not every closed walk through v contains a
cycle through v! [Try to find an example!]
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Another Useful Graph Fact

* Degree of a vertex v
* Number of edges incident to v
e Denoted by deg(v)

 Thm: For any graph G = (V,E)

Edeg(v)=2|EI

vevV

where |E| is the number of edges in G

* Proof Hint: Induction on |E|: How does
removing an edge change the equation!?

e Or: Count pairs (v,e) where v is incident with e

29



Reachability and Connectedness

Def'n: A vertex v in G is reachable from a
vertex u in G if there is a path fromu to v

v is reachable from u iff u is reachable from v

Def'n: An undirected graph G is connected if
for every pair of vertices u, vin G, v is
reachable from u (and vice versa)

The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v
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Basic Graph Algorithms

* We'll look at a number of graph algorithms

Connectedness: Is G connected!?

* If not, how many connected components does G have!

Cycle testing: Does G contain a cycle?

* Does G contain a cycle through a given vertex?

If the edges of G have costs:

* What is the cheapest subgraph connecting all vertices

— Called a connected, spanning subgraph

* What is a cheapest path from u to v!?

And more....
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Operations on Graphs

* What are the basic operations we need to
describe algorithms on graphs?

Given vertices u and v: are they adjacent!?
Given vertex v and edge e, are they incident!
Given an edge e, get its incident vertices (ends)

How many vertices are adjacent to v! (degree of v)

* The vertices adjacent to v are called its neighbors

Get a list of the vertices adjacent to v

* From which we can get the edges incident with v
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Testing Connectedness

* How can we determine whether G is
connected?

e Pick a vertex v; see if every vertex u is reachable
from v

e How could we do this?

* Visit the neighbors of v, then visit their neighbors,
etc. See if you reach all vertices

e Assume we can mark a vertex as ‘‘visited”

* How do we efficiently manage all this visiting?
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Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
Il pre: all vertices are marked as unvisited
count €0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current € Q.dequeue();

for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++

return count;

Now compare value returned from BFS(G,v) to size of V
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BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u
reachable from v.

Proof: We’'ll show that if u is reachable from v
then BFS(G,v) visits u by induction on d = d(v,u)
e Base Case:d=0. Thenu =v.

* v is reachable from v and BFS(G,v) visits v

* Induction Hypothesis: For some d = 0, if d(u,v)
= d then BFS(G,v) visits u.
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BFS Theorem

* Induction Step: Assume now that d(u,v) = d+1

e Letv=yvy e, V|, €, Vy, «.. , Vg, €441> Vg+] = U be a

path of length d+1 from v to u

e Thenv =vg e, Vv, €, Vy .., V4 is a path of length d
from v to v,

e By LLH., v, is visited by BFS(G,v) and put in Q

* So v4 will be dequeued and all of its unvisited
neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by
BFS(G,v) then u is reachable from v
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BFS Reflections

The BFS algorithm traced out a tree T,: the
edges connecting a visited vertex to (as yet)
unvisited neighbors

T, is called a BFS tree of G with root v (or from v)
The vertices of T, are visited in level-order

Every path in T, from v to a vertex u is a
shortest possible path from v to u

e That is, the path has length d(v,u)
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Reachability: Depth-First Search

DFS(G, v) // Do a depth-first search of G starting at v
I/ pre: all vertices are marked as unvisited
count €0;
Create empty stack S; push v; mark v as visited; count++;
While S isn’t empty

current € S.pop();

for each unvisited neighbor u of current :

add u to S; mark u as visited; count++

return count;

Now compare value returned from DFS(G,v) to size of V
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DFS Reflections

The DFS algorithm traced out a tree different
from that produced by BFS

* |t still consists of the edges connecting a visited
vertex to (as yet) unvisited neighbors

It is called a DFS tree of G with root v (or from v)

Vertices are processed in pre-order w.r.t. the
tree

By manipulating the stack differently, we could
produce a post-order version of DFS

And perhaps write DFS recursively....
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Recursive Depth-First Search

/] Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)
Mark v as visited; count = |;
for each unvisited neighbor u of v:
count += DFS(G,u);
return count;

Is it even clear that this method does what we want?!

Let’s prove some facts about it....
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What Exactly Does DFS Do!?

* Given a graph G = (V, E), a vertex v, let X C
V, where v & X.

* Assume X are exactly the vertices of V that
have been marked as visited

e Claim: DFS(G,v) will visit exactly those
vertices that are in the connected component
of G — X that contains v

e G — X is the graph obtained by deleting the
vertices of X—and edges using X—from G

* Prove by induction on |V — X|
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Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v

*Proof: Induction on length d of shortest path
fromvtow
e Basecase:d=0: Thenv=w V

* Ind. Hyp.: Assume DFS visits all vertices w of
distance at most d from v (for some d >= 0).

* Ind. Step: Suppose now that w is distance d+|
from v. Consider a path of length d+| from v tow
and let u be the next-to-last vertex on the path
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Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v

* Proof: Induction on length d of shortest path
fromvtow

* The pathis v =vg, V|, Vo, ce. , Vg = U, Vg4 = W

* The edges are implied so not explicitly written!

* By Ind. Hyp., u is visited. At this point, if w has not
yet been visited, it will be one of the unvisited
vertices on which DFS() is recursively called, so it
will then be visited.
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Recursive Depth-First Search

Claim: DFS visits only vertices reachable from v

*ldea: Prove by induction on number of times
DFS is called that DFS is only called on vertices
w reachable from v

Claim: DFS counts correctly the number of
vertices reachable from v

e |dea: Induction on number of unvisited
vertices reachable from v

e DFS will never be called on same vertex twice
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Recursive Depth-First Search

Claim: DFS(G,v) returns the number of unvisited
nodes reachable from v

Proof: Uses previous two observations
e DFS visits every node reachable from v

e DFS doesn’t visit any node not reachable from v
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Directed Graphs

S Graphics
|

Algorithms
— Theor

Linear Algebra

Compilers

Discrete Math

Programming Languages

Data Structures
Java < .
O ting Syst
Organization —— perating Systems

Def’n: In a directed graph G = (V,E), each edge e in E is an ordered
pair: e = (u,v) vertices: its incident vertices. The source of e is u; the

destination/target is v.

Note: (u,v) # (v,u)
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Directed Graphs
o

* The (out) neighbors of B

are D, G, H: B has out- 0"‘

degree 3

* The in neighbors of B are "“
A, C: B has in-degree 2

« Ahasin-degree O:itis a °
source in G; D has out-

degree 0: it is a sink in G 0‘6

A walk is still an alternating sequence of vertices and edges
U=Vy€,V5€,Vy ., Vi € Vk — V

but now e, = (v4,Vv;): all edges point along direction of walk
47




Directed Graphs
o

A, B, H, E, Dis awalk from

Ato D Q"g
It's also a (simple) path

D, E, H, B, Ais not a walk "0‘
from D to A

B. G, F, C, Bis a (directed) o

cycle (it's a 4-cycle)

Sois H, E, H (a 2-cycle) 0‘6

D is reachable from A (via path A, B, D), but A is not
reachable from D
In fact, every vertex is reachable from A

48



Directed Graphs
o

A BFS of G from A visits

every vertex 04"
A BFS of G from F visits all

vertices but A "e‘
A BFS of G from E visits

only E, H, D (2
S
()

Connectivity in directed graphs is more subtle than in
undirected graphs!
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Directed Graphs

* Vertices u and v are mutually
reachable vertices if there are
paths fromutovandvtou

« Maximal sets of mutually
reachable vertices form the
strongly connected
components of G
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Implementing Graphs

* Involves a number of implementation
decisions, depending on intended uses

* What kinds of graphs will be availabe?

* Undirected, directed, mixed
* What underlying data structures will be used?
* What functionality will be provided
* What aspects will be public/protected/private

* We'll focus on popular implementations for
undirected and directed graphs (separately)
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Graphs in structure5

* We want to store information at vertices and at
edges, but we favor vertices

* Let V and E represent the types of information held
by vertices and edges respectively

* Interface Graph<V,E> extends Structure<V>

* Vertices are the building blocks; edges depend on them

* Type V holds a label for a (hidden) vertex type
* Type E holds a label for an (available) edge type

* Label: Application-specific data for a vertex/edge
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Graphs in structure5

e So, the methods described in the Structure<V>
interface are about vertices (but also impact
edges: e.g., clear() )

* We'll want to add a number of similar methods
to provide information about edges, and the
graph itself
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Recall: Desired Functionality

* What are the basic operations we need to
describe algorithms on graphs?

Given vertices u and v: are they adjacent!
Given vertex v and edge e, are they incident?
Given an edge e, get its incident vertices (ends)

How many vertices are adjacent to v! (degree of v)

* The vertices adjacent to v are called its neighbors

Get a list of the neighbors of v (or the edges
incident with v)
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Graph Interface Methods

void add(V vtx), V remove(V vtx)
* Add/remove vertex to/from graph
void addEdge(V vtx|, V vtx2, E edgelabel),
E removeEdge(V vtxl, V vtx2)
* Add/remove edge between vtx| and vtx2
boolean containskEdge(V vtxl, V vtx2)
e Returns true iff there is an edge between vtx| and vtx2
Edge<V,E> getEdge(V vtxl, V vtx2)
e Returns edge between vtx| and vtx2
void clear()

* Remove all nodes (and edges) from graph
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Graph Interface Methods

boolean visit(V vertexLabel)
e Mark vertex as “visited” and return previous value of visited flag
boolean visitEdge(Edge<V,E> e)
e Mark edge as “visited”
boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)
e Returns true iff vertex/edge has been visited
Iterator<V> neighbors(V vtxl)
e Get iterator for all neighbors of vtxl|
* For directed graphs, out-edges only
Iterator<V> iterator()
e Get vertex iterator
void reset()
* Remove visited flags for all nodes/edges
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Edge Class

e Graph edges are defined in their own public class
e Edge<V,E>( V vtxl, V vtx2,
E label, boolean directed)
e Construct a (possibly directed) edge between two labeled
vertices (vtx|->vtx2)

e Useful methods:
label(), here(), there()
setLabel(), isVisited(), isDirected()
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Reachability: Breadth-First Traversal

BIS(G, v) /7 Do a breadth-first search of G starting at v

// pre: all vertices are marked as unvisited
count €< 0:

Create empty queue (J; engueue v; mark v as visited; count++

While Q isn t empty
current < ().dequeue();
Jor each unvisited neighbor u of current :

add u to Q; mark u as vistted: count++
relurn count:

Now compare value returned from BFS(G,v) to size of V
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Breadth-First Traversal

int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) {
g.visit(next); count++;
todo.enqueue(next);

}

return count;
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Breadth-First Traversal of Edges

int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.isVisited(next)) {
g.visit(next); count++;
todo.enqueue(next);

}

return count;
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