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Last Time

• Lab 9: Super Lexicon!
• AVL trees
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Today’s Outline

• Red-black trees
• Graphs
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Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness
• Each node is colored red or black

• Coloring satisfies these rules
• All empty trees are black

• We consider them to be the leaves of the tree

• Children of red nodes are black
• All paths from a given node to it’s descendent leaves 

have the same number of black nodes
• This is called the black height of the node
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A Red-Black Tree
(from Wikipedia.org)
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Red-Black Trees

The coloring rules lead to the following result
Proposition: No leaf has depth more than twice 
that of any other leaf.
This in turn can be used to show
Theorem: A Red-Black tree with n internal nodes 
has height satisfying ℎ ≤ 2 log(𝑛 + 1)

• Note: The tree will have exactly n+1 (empty) leaves
• since each internal node has two children
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Red-Black Trees
Theorem: A Red-Black tree with n internal nodes has 
height satisfying ℎ ≤ 2 log(𝑛 + 1)
Proof sketch: Note: we count empty tree nodes!
• If root is red, recolor it black.
• Now merge red children into (black) parents

• Now n’ ≤ n nodes and height h’ ≥ h/2

• New tree has all children with degree 2, 3, or 4
• All leaves have depth exactly h’ and there are n+1 leaves

• So 𝑛 + 1 ≥ 245 , so log6 𝑛 + 1 ≥ ℎ7 ≥ 4
6

• Thus 2 log6 𝑛 + 1 ≥ ℎ
Corollary: R-B trees with n nodes have height O(log n)
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Red-Black Trees: Insert

• Series of rules such as: “if my parent is red
and my uncle is black and I am a right child of 
my parent, rotate me to the left.  Then, rotate 
my parent to the right, color it black, and 
color its new children red.”

• This works. We won’t go over it in detail.
The Wikipedia article on this is excellent

• Deletes are significantly worse
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Splay Trees

Splay trees are self-adjusting binary trees
• Each time a node is accessed, it is moved to 

root position via rotations
• No metadata at all.  Just rotate up each element 

you access
• 2 rules to rotate up; that’s it
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Splay Trees

Splay trees are self-adjusting binary trees
• Each time a node is accessed, it is moved to 

root position via rotations
• No guarantee of balance (or shallow height)
• But good amortized performance
Theorem: Any set of m operations (add, remove, 
contains, get) on an n-node splay tree take at 
most O(m log n) time.
• “As good” as an AVL or Red-Black Tree!
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Splay Tree Rotations

Right Zig-Zig Rotation (left version too)

Right Zig-Zag Rotation (left version too)
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Dynamic Optimality

• Conjecture: For any sequence of access 
operations, if the best possible Binary Search 
Tree takes X operations, then a splay tree 
takes O(X) operations

• Essentially: keeping no metadata, and with no 
knowledge of the future, splay trees do as well 
as a perfect tree that knows the whole 
sequence in advance
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Dynamic Optimality

• Conjecture: For any sequence of access 
operations, if the best possible Binary Search 
Tree takes X operations, then a splay tree 
takes O(X) operations

• One consequence would be: splay trees can 
handle stack or queue operations in O(1) 
average operations like a DLL

• Recent progress by Levy and Tarjan in 2019
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Dynamic Optimality

• Some really cool math in this area
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Trees: What to Know

• Time for lookup, insert, delete in AVL tree? In 
Red-black tree?

• How do we adjust the structure of a tree?
• Related: how do we move elements to maintain 

balance?

• How does an AVL tree maintain balance?  
What must it keep track of?

• How does a red-black tree maintain balance?
What must it keep track of?
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Graphs Describe the World

• Transportation Networks
• Communication Networks
• Molecular structures
• Dependency structures
• Scheduling
• Matching
• Graphics Modeling
• ....
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Nodes = subway stops;  Edges = track between stops
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Nodes = cities; Edges = rail lines connecting cities
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Note: Connections in graph matter, not precise locations of nodes
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SRI

STAN

UCLA

RAND

UTAH

CMU

NRL

HARV

MIT

BBN

Internet (~1972)
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Internet (~1998)
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WORD

CORD

WARD

WOAD

WOLD

WOOD

LORDFORD

WORM

WORE WORK

WORN WORT

Word Game
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Java

Data Structures

Organization

Discrete Math Theory of comp.

Algorithms

Programming Languages

Operating Systems

AI

Compilers

Graphics

CS Pre-requisite Structure (subset)

Nodes = courses; Edges = prerequisites ***
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Wire-Frame Models
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Def’n:  An undirected graph G = (V,E) consists of two sets

•V : the vertices of G, and E : the edges of G

•Each edge e in E is defined by a set of two vertices: its incident 
vertices.  We write e = {u,v} and say that u and v are adjacent.

Basic Definitions & Concepts
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Walking Along a Graph

• A walk from u to v in a graph G = (V,E) is an 
alternating sequence of vertices and edges

u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

such that each ei = {vi , vi+1} for i = 1, ... , k

• Note a walk starts and ends on a vertex

• If no edge appears more than once then 
the walk is called a path

• If no vertex appears more than once then 
the walk is a simple path
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Walking In Circles

• A closed walk in a graph G = (V,E) is a walk
v0, e1, v1, e2, v2, ... , vk-1, ek, vk

such that each v0 = vk

• A circuit is a path where v0 = vk
•No repeated edges

• A cycle is a simple path where v0 = vk
•No repeated vertices (uhm, except for v0!)

• The length of any of these is the number of 
edges in the sequence
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Little Tiny Theorems

• If there is a walk from u to v, then there is a 
walk from v to u.

• If there is a walk from u to v, then there is a 
path from u to v (and from v to u)

• If there is a path from u to v, then there is a 
simple path from u to v (and v to u)

• Every circuit through v contains a cycle 
through v

• Not every closed walk through v contains a 
cycle through v! [Try to find an example!]
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Another Useful Graph Fact

• Degree of a vertex v
• Number of edges incident to v
• Denoted by deg(v)

• Thm: For any graph G = (V,E)

where |E| is the number of edges in G
• Proof Hint: Induction on |E|: How does 

removing an edge change the equation?
• Or: Count pairs (v,e) where v is incident with e

deg(v)
v∈V
∑ = 2 | E |
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Reachability and Connectedness

• Def’n: A vertex v in G is reachable from a 
vertex u in G if there is a path from u to v

• v is reachable from u iff u is reachable from v
• Def’n: An undirected graph G is connected if 

for every pair of vertices u, v in G, v is 
reachable from u (and vice versa)

• The set of all vertices reachable from v, along 
with all edges of G connecting any two of 
them, is called the connected component of v
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Basic Graph Algorithms

• We’ll look at a number of graph algorithms
• Connectedness: Is G connected?

• If not, how many connected components does G have?

• Cycle testing: Does G contain a cycle?
• Does G contain a cycle through a given vertex?

• If the edges of G have costs:
• What is the cheapest subgraph connecting all vertices

– Called a connected, spanning subgraph

• What is a cheapest path from u to v?

• And more....
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Operations on Graphs

• What are the basic operations we need to 
describe algorithms on graphs?
• Given vertices u and v: are they adjacent?

• Given vertex v and edge e, are they incident?
• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (degree of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the vertices adjacent to v
• From which we can get the edges incident with v 
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Testing Connectedness

• How can we determine whether G is 
connected?
• Pick a vertex v; see if every vertex u is reachable 

from v

• How could we do this?
• Visit the neighbors of v, then visit their neighbors, 

etc.  See if you reach all vertices
• Assume we can mark a vertex as “visited”

• How do we efficiently manage all this visiting?
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Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v

// pre: all vertices are marked as unvisited
count ß0;

Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u  of current :

add u to Q; mark u as visited; count++

return count;

Now compare value returned from BFS(G,v) to size of V
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BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u 
reachable from v.
Proof: We’ll show that if u is reachable from v 
then BFS(G,v) visits u by induction on d = d(v,u)
• Base Case: d = 0. Then u = v.
• v is reachable from v and BFS(G,v) visits v

• Induction Hypothesis: For some d ≥ 0, if d(u,v) 
= d then BFS(G,v) visits u.
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BFS Theorem

• Induction Step: Assume now that d(u,v) = d+1
• Let v = v0, e1, v1, e2, v2, ... , vd, ed+1, vd+1 = u be a 

path of length d+1 from v to u
• Then v = v0, e1, v1, e2, v2, ... , vd is a path of length d 

from v to vd

• By I.H., vd is visited by BFS(G,v) and put in Q
• So vd will be dequeued and all of its unvisited 

neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by 
BFS(G,v) then u is reachable from v
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BFS Reflections

• The BFS algorithm traced out a tree Tv: the 
edges connecting a visited vertex to (as yet) 
unvisited neighbors

• Tv is called a BFS tree of G with root v (or from v)
• The vertices of Tv are visited in level-order

• Every path in Tv from v to a vertex u is a 
shortest possible path from v to u
• That is, the path has length d(v,u)
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Reachability: Depth-First Search

DFS(G, v) // Do a depth-first search of G starting at v

// pre: all vertices are marked as unvisited
count ß0;

Create empty stack S; push v; mark v as visited; count++;
While S isn’t empty

current ßS.pop();
for each unvisited neighbor u  of current : 

add u to S; mark u as visited; count++

return count;

Now compare value returned from DFS(G,v) to size of V
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DFS Reflections
• The DFS algorithm traced out a tree different 

from that produced by BFS
• It still consists of the edges connecting a visited 

vertex to (as yet) unvisited neighbors

• It is called a DFS tree of G with root v (or from v)
• Vertices are processed in pre-order w.r.t. the 

tree
• By manipulating the stack differently, we could 

produce a post-order version of DFS
• And perhaps write DFS recursively….
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Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited

//Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count = 1;
for each unvisited neighbor u of v: 

count += DFS(G,u);
return count;

Is it even clear that this method does what we want?!

Let’s prove some facts about it....
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What Exactly Does DFS Do?

• Given a graph G = (V, E), a vertex v, let X ⊆
V, where v ∉ X.

• Assume X are exactly the vertices of V that 
have been marked as visited

• Claim: DFS(G,v) will visit exactly those 
vertices that are in the connected component 
of G – X that contains v
• G – X is the graph obtained by deleting the 

vertices of X–and edges using X–from G

• Prove by induction on |V – X|
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Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v
•Proof: Induction on length d of shortest path 
from v to w
• Base case: d = 0: Then v = w ✓
• Ind. Hyp.: Assume DFS visits all vertices w of 

distance at most d from v (for some d >= 0).

• Ind. Step: Suppose now that w is distance d+1 
from v. Consider a path of length d+1 from v to w 
and let u be the next-to-last vertex on the path
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Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v
• Proof: Induction on length d of shortest path 

from v to w
• The path is v = v0, v1, v2, ... , vd = u, vd+1 = w

• The edges are implied so not explicitly written!

• By Ind. Hyp., u is visited. At this point, if w has not 
yet been visited, it will be one of the unvisited 
vertices on which DFS() is recursively called, so it 
will then be visited.
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Recursive Depth-First Search

Claim: DFS visits only vertices reachable from v
•Idea: Prove by induction on number of times 
DFS is called that DFS is only called on vertices 
w reachable from v
Claim: DFS counts correctly the number of 
vertices reachable from v
• Idea: Induction on number of unvisited 

vertices reachable from v
• DFS will never be called on same vertex twice
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Recursive Depth-First Search

Claim: DFS(G,v) returns the number of unvisited 
nodes reachable from v
Proof: Uses previous two observations
• DFS visits every node reachable from v

• DFS doesn’t visit any node not reachable from v
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Java
Data Structures

Organization

Discrete Math Theory
Algorithms

Programming Languages

Operating Systems

AI

Compilers

Graphics
Linear Algebra

Directed Graphs

Def’n:  In a directed graph G = (V,E), each edge e in E is an ordered
pair: e = (u,v) vertices: its incident vertices.  The source of e is u; the 
destination/target is v.

Note: (u,v) ≠ (v,u)



47

Directed Graphs

• The (out) neighbors of B 
are D, G, H: B has out-
degree 3

• The in neighbors of B are 
A, C: B has in-degree 2

• A has in-degree 0: it is a 
source in G; D has out-
degree 0: it is a sink in G

A walk is still an alternating sequence of vertices and edges
u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

but now ei = (vi-1,vi): all edges point along direction of walk
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Directed Graphs

• A, B, H, E, D is a walk from 
A to D

• It’s also a (simple) path
• D, E, H, B, A is not a walk 

from D to A
• B, G, F, C, B is a (directed) 

cycle (it’s a 4-cycle)
• So is H, E, H (a 2-cycle)

• D is reachable from A (via path A, B, D), but A is not 
reachable from D

• In fact, every vertex is reachable from A
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Directed Graphs

• A BFS of G from A visits 
every vertex

• A BFS of G from F visits all 
vertices but A

• A BFS of G from E visits 
only E, H, D

• Connectivity in directed graphs is more subtle than in 
undirected graphs!
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Directed Graphs
• Vertices u and v are mutually 

reachable vertices if there are 
paths from u to v and v to u

• Maximal sets of mutually 
reachable vertices form the 
strongly connected 
components of G
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Implementing Graphs

• Involves a number of implementation 
decisions, depending on intended uses
• What kinds of graphs will be availabe?

• Undirected, directed, mixed

• What underlying data structures will be used?

• What functionality will be provided
• What aspects will be public/protected/private

• We’ll focus on popular implementations for 
undirected and directed graphs (separately)
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Graphs in structure5

• We want to store information at vertices and at 
edges, but we favor vertices
• Let V and E represent the types of information held 

by vertices and edges respectively
• Interface Graph<V,E> extends Structure<V>

• Vertices are the building blocks; edges depend on them

• Type V holds a label for a (hidden) vertex type
• Type E holds a label for an (available) edge type
• Label: Application-specific data for a vertex/edge
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Graphs in structure5

• So, the methods described in the Structure<V> 
interface are about vertices (but also impact 
edges: e.g., clear() )

• We’ll want to add a number of similar methods 
to provide information about edges, and the 
graph itself
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Recall: Desired Functionality

• What are the basic operations we need to 
describe algorithms on graphs?
• Given vertices u and v: are they adjacent?

• Given vertex v and edge e, are they incident?
• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (degree of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the neighbors of v (or the edges 
incident with v)
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Graph Interface Methods
• void add(V vtx), V remove(V vtx)

• Add/remove vertex to/from graph

• void addEdge(V vtx1, V vtx2, E edgeLabel), 

E removeEdge(V vtx1, V vtx2)   

• Add/remove edge between vtx1 and vtx2

• boolean containsEdge(V vtx1, V vtx2)

• Returns true iff there is an edge between vtx1 and vtx2

• Edge<V,E> getEdge(V vtx1, V vtx2)

• Returns edge between vtx1 and vtx2

• void clear()

• Remove all nodes (and edges) from graph
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Graph Interface Methods
• boolean visit(V vertexLabel)

• Mark vertex as “visited” and return previous value of visited flag
• boolean visitEdge(Edge<V,E> e)

• Mark edge as “visited”

• boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)
• Returns true iff vertex/edge has been visited

• Iterator<V> neighbors(V vtx1)
• Get iterator for all neighbors of vtx1
• For directed graphs, out-edges only

• Iterator<V> iterator()
• Get vertex iterator

• void reset()
• Remove visited flags for all nodes/edges
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Edge Class

• Graph edges are defined in their own public class
• Edge<V,E>( V vtx1, V vtx2, 

E label, boolean directed)

• Construct a (possibly directed) edge between two labeled 
vertices (vtx1->vtx2) 

• Useful methods: 
label(), here(), there()
setLabel(), isVisited(), isDirected()



58

Reachability: Breadth-First Traversal

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u  of current :

add u to Q; mark u as visited; count++
return count;

Now compare value returned from BFS(G,v) to size of V
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Breadth-First Traversal
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src); 
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}
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Breadth-First Traversal of Edges
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src); 
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}


