
CSCI 136
Data Structures &

Advanced Programming

Lecture 27
Fall 2019

Instructors: Bill Sam

2

Last Time

• Lab 9: Super Lexicon!
• AVL trees

3

Today’s Outline

• Red-black trees
• Graphs

4

Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness
• Each node is colored red or black

• Coloring satisfies these rules
• All empty trees are black

• We consider them to be the leaves of the tree

• Children of red nodes are black
• All paths from a given node to it’s descendent leaves

have the same number of black nodes
• This is called the black height of the node

5

A Red-Black Tree
(from Wikipedia.org)

6

Red-Black Trees

The coloring rules lead to the following result
Proposition: No leaf has depth more than twice
that of any other leaf.
This in turn can be used to show
Theorem: A Red-Black tree with n internal nodes
has height satisfying ℎ ≤ 2 log(𝑛 + 1)

• Note: The tree will have exactly n+1 (empty) leaves
• since each internal node has two children

7

Red-Black Trees
Theorem: A Red-Black tree with n internal nodes has
height satisfying ℎ ≤ 2 log(𝑛 + 1)
Proof sketch: Note: we count empty tree nodes!
• If root is red, recolor it black.
• Now merge red children into (black) parents

• Now n’ ≤ n nodes and height h’ ≥ h/2

• New tree has all children with degree 2, 3, or 4
• All leaves have depth exactly h’ and there are n+1 leaves

• So 𝑛 + 1 ≥ 245 , so log6 𝑛 + 1 ≥ ℎ7 ≥ 4
6

• Thus 2 log6 𝑛 + 1 ≥ ℎ
Corollary: R-B trees with n nodes have height O(log n)

8

Red-Black Trees: Insert

• Series of rules such as: “if my parent is red
and my uncle is black and I am a right child of
my parent, rotate me to the left. Then, rotate
my parent to the right, color it black, and
color its new children red.”

• This works. We won’t go over it in detail.
The Wikipedia article on this is excellent

• Deletes are significantly worse

9

Splay Trees

Splay trees are self-adjusting binary trees
• Each time a node is accessed, it is moved to

root position via rotations
• No metadata at all. Just rotate up each element

you access
• 2 rules to rotate up; that’s it

10

Splay Trees

Splay trees are self-adjusting binary trees
• Each time a node is accessed, it is moved to

root position via rotations
• No guarantee of balance (or shallow height)
• But good amortized performance
Theorem: Any set of m operations (add, remove,
contains, get) on an n-node splay tree take at
most O(m log n) time.
• “As good” as an AVL or Red-Black Tree!

11

Splay Tree Rotations

Right Zig-Zig Rotation (left version too)

Right Zig-Zag Rotation (left version too)

12

Dynamic Optimality

• Conjecture: For any sequence of access
operations, if the best possible Binary Search
Tree takes X operations, then a splay tree
takes O(X) operations

• Essentially: keeping no metadata, and with no
knowledge of the future, splay trees do as well
as a perfect tree that knows the whole
sequence in advance

13

Dynamic Optimality

• Conjecture: For any sequence of access
operations, if the best possible Binary Search
Tree takes X operations, then a splay tree
takes O(X) operations

• One consequence would be: splay trees can
handle stack or queue operations in O(1)
average operations like a DLL

• Recent progress by Levy and Tarjan in 2019

14

Dynamic Optimality

• Some really cool math in this area

15

Trees: What to Know

• Time for lookup, insert, delete in AVL tree? In
Red-black tree?

• How do we adjust the structure of a tree?
• Related: how do we move elements to maintain

balance?

• How does an AVL tree maintain balance?
What must it keep track of?

• How does a red-black tree maintain balance?
What must it keep track of?

16

Graphs Describe the World

• Transportation Networks
• Communication Networks
• Molecular structures
• Dependency structures
• Scheduling
• Matching
• Graphics Modeling
•

17
Nodes = subway stops; Edges = track between stops

18

Seattle

Portland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Nodes = cities; Edges = rail lines connecting cities

19

SeattlePortland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Note: Connections in graph matter, not precise locations of nodes

20

SRI

STAN

UCLA

RAND

UTAH

CMU

NRL

HARV

MIT

BBN

Internet (~1972)

21

Internet (~1998)

22

WORD

CORD

WARD

WOAD

WOLD

WOOD

LORDFORD

WORM

WORE WORK

WORN WORT

Word Game

23

Java

Data Structures

Organization

Discrete Math Theory of comp.

Algorithms

Programming Languages

Operating Systems

AI

Compilers

Graphics

CS Pre-requisite Structure (subset)

Nodes = courses; Edges = prerequisites ***

24

Wire-Frame Models

25

Portland

Dallas Atlanta

Seattle

SF

LA

Denver Chicago

NY

Boston

Def’n: An undirected graph G = (V,E) consists of two sets

•V : the vertices of G, and E : the edges of G

•Each edge e in E is defined by a set of two vertices: its incident
vertices. We write e = {u,v} and say that u and v are adjacent.

Basic Definitions & Concepts

26

Walking Along a Graph

• A walk from u to v in a graph G = (V,E) is an
alternating sequence of vertices and edges

u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

such that each ei = {vi , vi+1} for i = 1, ... , k

• Note a walk starts and ends on a vertex

• If no edge appears more than once then
the walk is called a path

• If no vertex appears more than once then
the walk is a simple path

27

Walking In Circles

• A closed walk in a graph G = (V,E) is a walk
v0, e1, v1, e2, v2, ... , vk-1, ek, vk

such that each v0 = vk

• A circuit is a path where v0 = vk
•No repeated edges

• A cycle is a simple path where v0 = vk
•No repeated vertices (uhm, except for v0!)

• The length of any of these is the number of
edges in the sequence

28

Little Tiny Theorems

• If there is a walk from u to v, then there is a
walk from v to u.

• If there is a walk from u to v, then there is a
path from u to v (and from v to u)

• If there is a path from u to v, then there is a
simple path from u to v (and v to u)

• Every circuit through v contains a cycle
through v

• Not every closed walk through v contains a
cycle through v! [Try to find an example!]

29

Another Useful Graph Fact

• Degree of a vertex v
• Number of edges incident to v
• Denoted by deg(v)

• Thm: For any graph G = (V,E)

where |E| is the number of edges in G
• Proof Hint: Induction on |E|: How does

removing an edge change the equation?
• Or: Count pairs (v,e) where v is incident with e

deg(v)
v∈V
∑ = 2 | E |

30

Reachability and Connectedness

• Def’n: A vertex v in G is reachable from a
vertex u in G if there is a path from u to v

• v is reachable from u iff u is reachable from v
• Def’n: An undirected graph G is connected if

for every pair of vertices u, v in G, v is
reachable from u (and vice versa)

• The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

31

Basic Graph Algorithms

• We’ll look at a number of graph algorithms
• Connectedness: Is G connected?

• If not, how many connected components does G have?

• Cycle testing: Does G contain a cycle?
• Does G contain a cycle through a given vertex?

• If the edges of G have costs:
• What is the cheapest subgraph connecting all vertices

– Called a connected, spanning subgraph

• What is a cheapest path from u to v?

• And more....

32

Operations on Graphs

• What are the basic operations we need to
describe algorithms on graphs?
• Given vertices u and v: are they adjacent?

• Given vertex v and edge e, are they incident?
• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (degree of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the vertices adjacent to v
• From which we can get the edges incident with v

33

Testing Connectedness

• How can we determine whether G is
connected?
• Pick a vertex v; see if every vertex u is reachable

from v

• How could we do this?
• Visit the neighbors of v, then visit their neighbors,

etc. See if you reach all vertices
• Assume we can mark a vertex as “visited”

• How do we efficiently manage all this visiting?

34

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v

// pre: all vertices are marked as unvisited
count ß0;

Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++

return count;

Now compare value returned from BFS(G,v) to size of V

35

BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u
reachable from v.
Proof: We’ll show that if u is reachable from v
then BFS(G,v) visits u by induction on d = d(v,u)
• Base Case: d = 0. Then u = v.
• v is reachable from v and BFS(G,v) visits v

• Induction Hypothesis: For some d ≥ 0, if d(u,v)
= d then BFS(G,v) visits u.

36

BFS Theorem

• Induction Step: Assume now that d(u,v) = d+1
• Let v = v0, e1, v1, e2, v2, ... , vd, ed+1, vd+1 = u be a

path of length d+1 from v to u
• Then v = v0, e1, v1, e2, v2, ... , vd is a path of length d

from v to vd

• By I.H., vd is visited by BFS(G,v) and put in Q
• So vd will be dequeued and all of its unvisited

neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by
BFS(G,v) then u is reachable from v

37

BFS Reflections

• The BFS algorithm traced out a tree Tv: the
edges connecting a visited vertex to (as yet)
unvisited neighbors

• Tv is called a BFS tree of G with root v (or from v)
• The vertices of Tv are visited in level-order

• Every path in Tv from v to a vertex u is a
shortest possible path from v to u
• That is, the path has length d(v,u)

38

Reachability: Depth-First Search

DFS(G, v) // Do a depth-first search of G starting at v

// pre: all vertices are marked as unvisited
count ß0;

Create empty stack S; push v; mark v as visited; count++;
While S isn’t empty

current ßS.pop();
for each unvisited neighbor u of current :

add u to S; mark u as visited; count++

return count;

Now compare value returned from DFS(G,v) to size of V

39

DFS Reflections
• The DFS algorithm traced out a tree different

from that produced by BFS
• It still consists of the edges connecting a visited

vertex to (as yet) unvisited neighbors

• It is called a DFS tree of G with root v (or from v)
• Vertices are processed in pre-order w.r.t. the

tree
• By manipulating the stack differently, we could

produce a post-order version of DFS
• And perhaps write DFS recursively….

40

Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited

//Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count = 1;
for each unvisited neighbor u of v:

count += DFS(G,u);
return count;

Is it even clear that this method does what we want?!

Let’s prove some facts about it....

41

What Exactly Does DFS Do?

• Given a graph G = (V, E), a vertex v, let X ⊆
V, where v ∉ X.

• Assume X are exactly the vertices of V that
have been marked as visited

• Claim: DFS(G,v) will visit exactly those
vertices that are in the connected component
of G – X that contains v
• G – X is the graph obtained by deleting the

vertices of X–and edges using X–from G

• Prove by induction on |V – X|

42

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v
•Proof: Induction on length d of shortest path
from v to w
• Base case: d = 0: Then v = w ✓
• Ind. Hyp.: Assume DFS visits all vertices w of

distance at most d from v (for some d >= 0).

• Ind. Step: Suppose now that w is distance d+1
from v. Consider a path of length d+1 from v to w
and let u be the next-to-last vertex on the path

43

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v
• Proof: Induction on length d of shortest path

from v to w
• The path is v = v0, v1, v2, ... , vd = u, vd+1 = w

• The edges are implied so not explicitly written!

• By Ind. Hyp., u is visited. At this point, if w has not
yet been visited, it will be one of the unvisited
vertices on which DFS() is recursively called, so it
will then be visited.

44

Recursive Depth-First Search

Claim: DFS visits only vertices reachable from v
•Idea: Prove by induction on number of times
DFS is called that DFS is only called on vertices
w reachable from v
Claim: DFS counts correctly the number of
vertices reachable from v
• Idea: Induction on number of unvisited

vertices reachable from v
• DFS will never be called on same vertex twice

45

Recursive Depth-First Search

Claim: DFS(G,v) returns the number of unvisited
nodes reachable from v
Proof: Uses previous two observations
• DFS visits every node reachable from v

• DFS doesn’t visit any node not reachable from v

46

Java
Data Structures

Organization

Discrete Math Theory
Algorithms

Programming Languages

Operating Systems

AI

Compilers

Graphics
Linear Algebra

Directed Graphs

Def’n: In a directed graph G = (V,E), each edge e in E is an ordered
pair: e = (u,v) vertices: its incident vertices. The source of e is u; the
destination/target is v.

Note: (u,v) ≠ (v,u)

47

Directed Graphs

• The (out) neighbors of B
are D, G, H: B has out-
degree 3

• The in neighbors of B are
A, C: B has in-degree 2

• A has in-degree 0: it is a
source in G; D has out-
degree 0: it is a sink in G

A walk is still an alternating sequence of vertices and edges
u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

but now ei = (vi-1,vi): all edges point along direction of walk

48

Directed Graphs

• A, B, H, E, D is a walk from
A to D

• It’s also a (simple) path
• D, E, H, B, A is not a walk

from D to A
• B, G, F, C, B is a (directed)

cycle (it’s a 4-cycle)
• So is H, E, H (a 2-cycle)

• D is reachable from A (via path A, B, D), but A is not
reachable from D

• In fact, every vertex is reachable from A

49

Directed Graphs

• A BFS of G from A visits
every vertex

• A BFS of G from F visits all
vertices but A

• A BFS of G from E visits
only E, H, D

• Connectivity in directed graphs is more subtle than in
undirected graphs!

50

Directed Graphs
• Vertices u and v are mutually

reachable vertices if there are
paths from u to v and v to u

• Maximal sets of mutually
reachable vertices form the
strongly connected
components of G

51

Implementing Graphs

• Involves a number of implementation
decisions, depending on intended uses
• What kinds of graphs will be availabe?

• Undirected, directed, mixed

• What underlying data structures will be used?

• What functionality will be provided
• What aspects will be public/protected/private

• We’ll focus on popular implementations for
undirected and directed graphs (separately)

52

Graphs in structure5

• We want to store information at vertices and at
edges, but we favor vertices
• Let V and E represent the types of information held

by vertices and edges respectively
• Interface Graph<V,E> extends Structure<V>

• Vertices are the building blocks; edges depend on them

• Type V holds a label for a (hidden) vertex type
• Type E holds a label for an (available) edge type
• Label: Application-specific data for a vertex/edge

53

Graphs in structure5

• So, the methods described in the Structure<V>
interface are about vertices (but also impact
edges: e.g., clear())

• We’ll want to add a number of similar methods
to provide information about edges, and the
graph itself

54

Recall: Desired Functionality

• What are the basic operations we need to
describe algorithms on graphs?
• Given vertices u and v: are they adjacent?

• Given vertex v and edge e, are they incident?
• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (degree of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the neighbors of v (or the edges
incident with v)

55

Graph Interface Methods
• void add(V vtx), V remove(V vtx)

• Add/remove vertex to/from graph

• void addEdge(V vtx1, V vtx2, E edgeLabel),

E removeEdge(V vtx1, V vtx2)

• Add/remove edge between vtx1 and vtx2

• boolean containsEdge(V vtx1, V vtx2)

• Returns true iff there is an edge between vtx1 and vtx2

• Edge<V,E> getEdge(V vtx1, V vtx2)

• Returns edge between vtx1 and vtx2

• void clear()

• Remove all nodes (and edges) from graph

56

Graph Interface Methods
• boolean visit(V vertexLabel)

• Mark vertex as “visited” and return previous value of visited flag
• boolean visitEdge(Edge<V,E> e)

• Mark edge as “visited”

• boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)
• Returns true iff vertex/edge has been visited

• Iterator<V> neighbors(V vtx1)
• Get iterator for all neighbors of vtx1
• For directed graphs, out-edges only

• Iterator<V> iterator()
• Get vertex iterator

• void reset()
• Remove visited flags for all nodes/edges

57

Edge Class

• Graph edges are defined in their own public class
• Edge<V,E>(V vtx1, V vtx2,

E label, boolean directed)

• Construct a (possibly directed) edge between two labeled
vertices (vtx1->vtx2)

• Useful methods:
label(), here(), there()
setLabel(), isVisited(), isDirected()

58

Reachability: Breadth-First Traversal

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++
return count;

Now compare value returned from BFS(G,v) to size of V

59

Breadth-First Traversal
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}

60

Breadth-First Traversal of Edges
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}

