
CSCI 136
Data Structures &

Advanced Programming

Lecture 27
Fall 2019

Instructors: Bill Sam

2

Last Time

• Lab 9: Super Lexicon!
• Introduction To Graphs
• Definitions and Properties: Undirected Graphs

3

Today’s Outline

• More on Graphs
• Applications and Problems

• Testing connectedness
• Counting connected components

– Breadth-first and Depth-first search

• Directed Graphs
• Definition and Properties

• Reachability and (Strong) Connectedness

• Graph Data Structures: Preliminaries
• Graph Interface

4

Reachability and Connectedness

• Def’n: A vertex v in G is reachable from a
vertex u in G if there is a path from u to v

• v is reachable from u iff u is reachable from v
• Def’n: An undirected graph G is connected if

for every pair of vertices u, v in G, v is
reachable from u (and vice versa)

• The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

5

Basic Graph Algorithms

• We’ll look at a number of graph algorithms
• Connectedness: Is G connected?

• If not, how many connected components does G have?

• Cycle testing: Does G contain a cycle?
• Does G contain a cycle through a given vertex?

• If the edges of G have costs:
• What is the cheapest subgraph connecting all vertices

– Called a connected, spanning subgraph

• What is a cheapest path from u to v?

• And more....

6

Operations on Graphs

• What are the basic operations we need to
describe algorithms on graphs?
• Given vertices u and v: are they adjacent?

• Given vertex v and edge e, are they incident?
• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (degree of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the vertices adjacent to v
• From which we can get the edges incident with v

7

Testing Connectedness

• How can we determine whether G is
connected?
• Pick a vertex v; see if every vertex u is reachable

from v

• How could we do this?
• Visit the neighbors of v, then visit their neighbors,

etc. See if you reach all vertices
• Assume we can mark a vertex as “visited”

• How do we efficiently manage all this visiting?

8

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++
return count;

Now compare value returned from BFS(G,v) to size of V

9

BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u
reachable from v.
Proof: We’ll show that if u is reachable from v
then BFS(G,v) visits u by induction on d = d(v,u)
• Base Case: d = 0. Then u = v.
• v is reachable from v and BFS(G,v) visits v

• Induction Hypothesis: For some d ≥ 0, if d(u,v)
= d then BFS(G,v) visits u.

10

BFS Theorem

• Induction Step: Assume now that d(u,v) = d+1
• Let v = v0, e1, v1, e2, v2, ... , vd, ed+1, vd+1 = u be a

path of length d+1 from v to u
• Then v = v0, e1, v1, e2, v2, ... , vd is a path of length d

from v to vd

• By I.H., vd is visited by BFS(G,v) and put in Q
• So vd will be dequeued and all of its unvisited

neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by
BFS(G,v) then u is reachable from v

11

BFS Reflections

• The BFS algorithm can be modified to build a
tree Tv: the edges connecting a visited vertex
to (as yet) unvisited neighbors

• Tv is called a BFS tree of G with root v (or from v)
• The vertices of Tv are visited in level-order

• Every path in Tv from v to a vertex u is a
shortest possible path from v to u
• That is, the path has length d(v,u)

12

Reachability: Depth-First Search

DFS(G, v) // Do a depth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty stack S; push v; mark v as visited; count++;
While S isn’t empty

current ßS.pop();
for each unvisited neighbor u of current :

add u to S; mark u as visited; count++
return count;

Now compare value returned from DFS(G,v) to size of V

13

DFS Reflections
• The DFS algorithm traced out a tree different

from that produced by BFS
• It still consists of the edges connecting a visited

vertex to (as yet) unvisited neighbors

• It is called a DFS tree of G with root v (or from v)
• Vertices are processed in pre-order w.r.t. the

tree
• By manipulating the stack differently, we could

produce a post-order version of DFS
• And perhaps write DFS recursively….

14

Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count = 1;
for each unvisited neighbor u of v:

count += DFS(G,u);
return count;

Is it even clear that this method does what we want?!

Let’s prove some facts about it....

15

What Exactly Does DFS Do?

• Given a graph G = (V, E), a vertex v, let X ⊆
V, where v ∉ X.

• Assume X are exactly the vertices of V that
have been marked as visited

• Claim: DFS(G,v) will visit exactly those
unvisited vertices that are in the connected
component of G – X that contains v
• G – X is the graph obtained by deleting the

vertices of X–and edges using X–from G

• Prove by induction on |V – X|

16

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v
•Proof: Induction on length d of shortest path
from v to w
• Base case: d = 0: Then v = w ✓
• Ind. Hyp.: Assume DFS visits all vertices w of

distance at most d from v (for some d ≥ 0).

• Ind. Step: Suppose now that w is distance d+1
from v. Consider a path of length d+1 from v to w
and let u be the next-to-last vertex on the path

17

Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v
• Proof: Induction on length d of shortest path

from v to w
• The path is v = v0, v1, v2, ... , vd = u, vd+1 = w

• The edges are implied so not explicitly written!

• By Ind. Hyp., u is visited. At this point, if w has not
yet been visited, it will be one of the unvisited
vertices on which DFS() is recursively called, so it
will then be visited.

18

Recursive Depth-First Search

Claim: DFS visits only vertices reachable from v
•Idea: Prove by induction on number of times
DFS is called that DFS is only called on vertices
w reachable from v
Claim: DFS counts correctly the number of
vertices reachable from v
• Idea: Induction on number of unvisited

vertices reachable from v
• DFS will never be called on same vertex twice

19

Recursive Depth-First Search

Claim: DFS(G,v) returns the number of unvisited
nodes reachable from v
Proof: Uses previous two observations
• DFS visits every node reachable from v

• DFS doesn’t visit any node not reachable from v

20

Java
Data Structures

Organization

Discrete Math Theory
Algorithms

Programming Languages

Operating Systems

AI

Compilers

Graphics
Linear Algebra

Directed Graphs

Def’n: In a directed graph G = (V,E), each edge e in E is an ordered
pair: e = (u,v) vertices: its incident vertices. The source of e is u; the
destination/target is v.

Note: (u,v) ≠ (v,u)

21

Directed Graphs

• The (out) neighbors of B
are D, G, H: B has out-
degree 3

• The in neighbors of B are
A, C: B has in-degree 2

• A has in-degree 0: it is a
source in G; D has out-
degree 0: it is a sink in G

A walk is still an alternating sequence of vertices and edges
u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

but now ei = (vi-1,vi): all edges point along direction of walk

22

Directed Graphs

• A, B, H, E, D is a walk from
A to D

• It’s also a (simple) path
• D, E, H, B, A is not a walk

from D to A
• B, G, F, C, B is a (directed)

cycle (it’s a 4-cycle)
• So is H, E, H (a 2-cycle)

• D is reachable from A (via path A, B, D), but A is not
reachable from D

• In fact, every vertex is reachable from A

23

Directed Graphs

• A BFS of G from A visits
every vertex

• A BFS of G from F visits all
vertices but A

• A BFS of G from E visits
only E, H, D

• Connectivity in directed graphs is more subtle than in
undirected graphs!

24

Directed Graphs
• Vertices u and v are mutually

reachable vertices if there are
paths from u to v and v to u

• Maximal sets of mutually
reachable vertices form the
strongly connected
components of G

25

Implementing Graphs

• Involves a number of implementation
decisions, depending on intended uses
• What kinds of graphs will be availabe?

• Undirected, directed, mixed

• What underlying data structures will be used?

• What functionality will be provided
• What aspects will be public/protected/private

• We’ll focus on popular implementations for
undirected and directed graphs (separately)

26

Graphs in structure5

• We want to store information at vertices and at
edges, but we favor vertices
• Let V and E represent the types of information held

by vertices and edges respectively
• Interface Graph<V,E> extends Structure<V>

• Vertices are the building blocks; edges depend on them

• Type V holds a label for a (hidden) vertex type
• Type E holds a label for an (available) edge type
• Label: Application-specific data for a vertex/edge

27

Graphs in structure5

• So, the methods described in the Structure<V>
interface are about vertices (but also impact
edges: e.g., clear())

• We’ll want to add a number of similar methods
to provide information about edges, and the
graph itself

28

Recall: Desired Functionality

• What are the basic operations we need to
describe algorithms on graphs?
• Given vertices u and v: are they adjacent?

• Given vertex v and edge e, are they incident?
• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (degree of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the neighbors of v (or the edges
incident with v)

29

Graph Interface Methods
• void add(V vtx), V remove(V vtx)

• Add/remove vertex to/from graph

• void addEdge(V vtx1, V vtx2, E edgeLabel),

E removeEdge(V vtx1, V vtx2)

• Add/remove edge between vtx1 and vtx2

• boolean containsEdge(V vtx1, V vtx2)

• Returns true iff there is an edge between vtx1 and vtx2

• Edge<V,E> getEdge(V vtx1, V vtx2)

• Returns edge between vtx1 and vtx2

• void clear()

• Remove all nodes (and edges) from graph

30

Graph Interface Methods
• boolean visit(V vertexLabel)

• Mark vertex as “visited” and return previous value of visited flag
• boolean visitEdge(Edge<V,E> e)

• Mark edge as “visited”

• boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)
• Returns true iff vertex/edge has been visited

• Iterator<V> neighbors(V vtx1)
• Get iterator for all neighbors of vtx1
• For directed graphs, out-edges only

• Iterator<V> iterator()
• Get vertex iterator

• void reset()
• Remove visited flags for all nodes/edges

31

Edge Class

• Graph edges are defined in their own public class
• Edge<V,E>(V vtx1, V vtx2,

E label, boolean directed)

• Construct a (possibly directed) edge between two labeled
vertices (vtx1->vtx2)

• Useful methods:
label(), here(), there()
setLabel(), isVisited(), isDirected()

32

Reachability: Breadth-First Traversal

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++
return count;

Now compare value returned from BFS(G,v) to size of V

33

Breadth-First Traversal
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}

34

Breadth-First Traversal of Edges
int BFS(Graph<V,E> g, V src) {
Queue<V> todo = new QueueList<V>(); int count = 0;
g.visit(src); count++;
todo.enqueue(src);
while (!todo.isEmpty()) {
V node = todo.dequeue();
Iterator<V> neighbors = g.neighbors(node);
while (neighbors.hasNext()) {

V next = neighbors.next();
if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
if (!g.isVisited(next)) {

g.visit(next); count++;
todo.enqueue(next);

}
}

}
return count;

}

