CSCI 136 Data Structures & Advanced Programming

Lecture 27

Fall 2019

Instructors:

Bill

Sam

Last Time

- Lab 9: Super Lexicon!
- Introduction To Graphs
 - Definitions and Properties: Undirected Graphs

Today's Outline

- More on Graphs
 - Applications and Problems
 - Testing connectedness
 - Counting connected components
 - Breadth-first and Depth-first search
 - Directed Graphs
 - Definition and Properties
 - Reachability and (Strong) Connectedness
- Graph Data Structures: Preliminaries
 - Graph Interface

Reachability and Connectedness

- Def'n: A vertex v in G is reachable from a vertex u in G if there is a path from u to v
- v is reachable from u iff u is reachable from v
- Def'n: An undirected graph G is connected if for every pair of vertices u, v in G, v is reachable from u (and vice versa)
- The set of all vertices reachable from v, along with all edges of G connecting any two of them, is called the *connected component of v*

Basic Graph Algorithms

- We'll look at a number of graph algorithms
 - Connectedness: Is G connected?
 - If not, how many connected components does G have?
 - Cycle testing: Does G contain a cycle?
 - Does G contain a cycle through a given vertex?
 - If the edges of G have costs:
 - What is the cheapest subgraph connecting all vertices
 - Called a connected, spanning subgraph
 - What is a cheapest path from u to v?
 - And more....

Operations on Graphs

- What are the basic operations we need to describe algorithms on graphs?
 - Given vertices u and v: are they adjacent?
 - Given vertex v and edge e, are they incident?
 - Given an edge e, get its incident vertices (ends)
 - How many vertices are adjacent to v? (degree of v)
 - The vertices adjacent to v are called its neighbors
 - Get a list of the vertices adjacent to v
 - From which we can get the edges incident with v

Testing Connectedness

- How can we determine whether G is connected?
 - Pick a vertex v; see if every vertex u is reachable from v
- How could we do this?
 - Visit the neighbors of v, then visit their neighbors,
 etc. See if you reach all vertices
 - Assume we can mark a vertex as "visited"
- How do we efficiently manage all this visiting?

Reachability: Breadth-First Search

```
BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count \leftarrow 0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn't empty
        current \leftarrow Q.dequeue();
        for each unvisited neighbor u of current:
                 add u to Q; mark u as visited; count++
return count;
```

Now compare value returned from BFS(G,v) to size of V

BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u reachable from v.

Proof: We'll show that if u is reachable from v then BFS(G,v) visits u by induction on d = d(v,u)

- Base Case: d = 0. Then u = v.
 - v is reachable from v and BFS(G,v) visits v
- Induction Hypothesis: For some d ≥ 0, if d(u,v)
 = d then BFS(G,v) visits u.

BFS Theorem

- Induction Step: Assume now that d(u,v) = d+I
 - Let $v = v_0$, e_1 , v_1 , e_2 , v_2 , ..., v_d , e_{d+1} , $v_{d+1} = u$ be a path of length d+I from v to u
 - Then $v = v_0$, e_1 , v_1 , e_2 , v_2 , ..., v_d is a path of length d from v to v_d
 - By I.H., v_d is visited by BFS(G,v) and put in Q
 - So v_d will be dequeued and all of its unvisited neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by BFS(G,v) then u is reachable from v

BFS Reflections

- The BFS algorithm can be modified to build a tree T_v: the edges connecting a visited vertex to (as yet) unvisited neighbors
- T_v is called a BFS tree of G with root v (or from v)
- The vertices of T_v are visited in level-order
- Every path in T_v from v to a vertex u is a shortest possible path from v to u
 - That is, the path has length d(v,u)

Reachability: Depth-First Search

```
DFS(G, v) // Do a depth-first search of G starting at v
// pre: all vertices are marked as unvisited
count \leftarrow 0;
Create empty stack S; push v; mark v as visited; count++;
While S isn't empty
        current \leftarrow S.pop();
        for each unvisited neighbor u of current:
                 add u to S; mark u as visited; count++
return count;
```

Now compare value returned from DFS(G,v) to size of V

DFS Reflections

- The DFS algorithm traced out a tree different from that produced by BFS
 - It still consists of the edges connecting a visited vertex to (as yet) unvisited neighbors
- It is called a DFS tree of G with root v (or from v)
- Vertices are processed in pre-order w.r.t. the tree
- By manipulating the stack differently, we could produce a post-order version of DFS
- And perhaps write DFS recursively....

```
// Before first call to DFS, set all vertices to unvisited
//Then call DFS(G,v)

DFS(G, v)

Mark v as visited; count = 1;

for each unvisited neighbor u of v:

count += DFS(G,u);

return count;
```

Is it even clear that this method does what we want?!

Let's prove some facts about it....

What Exactly Does DFS Do?

- Given a graph G = (V, E), a vertex v, let X ⊆
 V, where v ∉ X.
- Assume X are exactly the vertices of V that have been marked as visited
- Claim: DFS(G,v) will visit exactly those unvisited vertices that are in the connected component of G – X that contains v
 - G X is the graph obtained by deleting the vertices of X–and edges using X–from G
 - Prove by induction on |V X|

Claim: DFS visits all vertices w reachable from v

- Proof: Induction on length d of shortest path from v to w
 - Base case: d = 0: Then $v = w \checkmark$
 - Ind. Hyp.: Assume DFS visits all vertices w of distance at most d from v (for some d ≥ 0).
 - Ind. Step: Suppose now that w is distance d+I
 from v. Consider a path of length d+I from v to w
 and let u be the next-to-last vertex on the path

Claim: DFS visits all vertices w reachable from v

- Proof: Induction on length d of shortest path from v to w
 - The path is $v = v_0, v_1, v_2, ..., v_d = u, v_{d+1} = w$
 - The edges are implied so not explicitly written!
 - By Ind. Hyp., u is visited. At this point, if w has not yet been visited, it will be one of the unvisited vertices on which DFS() is recursively called, so it will then be visited.

Claim: DFS visits only vertices reachable from v

Idea: Prove by induction on number of times
 DFS is called that DFS is only called on vertices
 w reachable from v

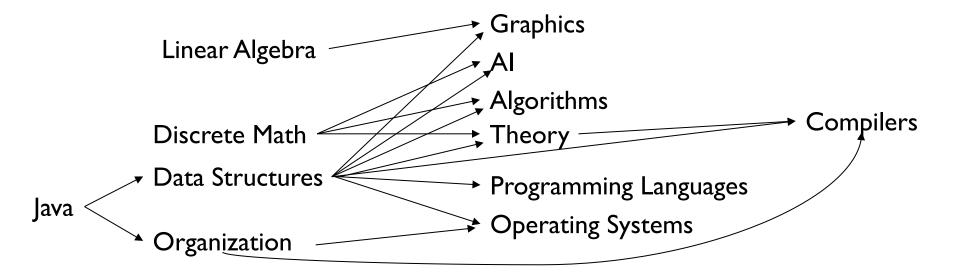
Claim: DFS counts correctly the number of vertices reachable from v

- Idea: Induction on number of unvisited vertices reachable from v
 - DFS will never be called on same vertex twice

Claim: DFS(G,v) returns the number of unvisited nodes reachable from v

Proof: Uses previous two observations

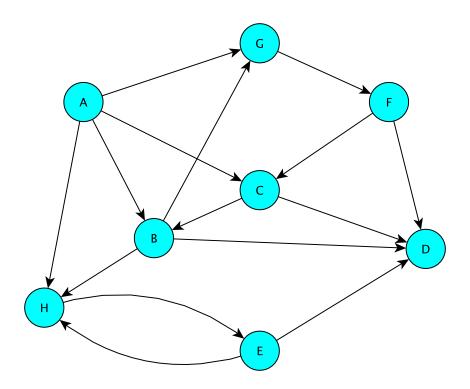
- DFS visits every node reachable from v
- DFS doesn't visit any node not reachable from v



Def'n: In a directed graph G = (V,E), each edge e in E is an ordered pair: e = (u,v) vertices: its incident vertices. The source of e is u; the destination/target is v.

Note: $(u,v) \neq (v,u)$

- The (out) neighbors of B are D, G, H: B has outdegree 3
- The in neighbors of B are
 A, C: B has in-degree 2
- A has in-degree 0: it is a source in G; D has outdegree 0: it is a sink in G

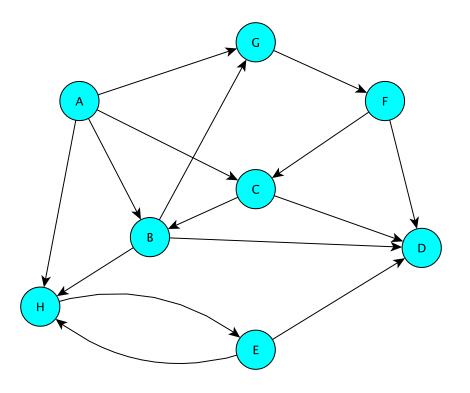


A walk is still an alternating sequence of vertices and edges

$$u = v_0, e_1, v_1, e_2, v_2, ..., v_{k-1}, e_k, v_k = v$$

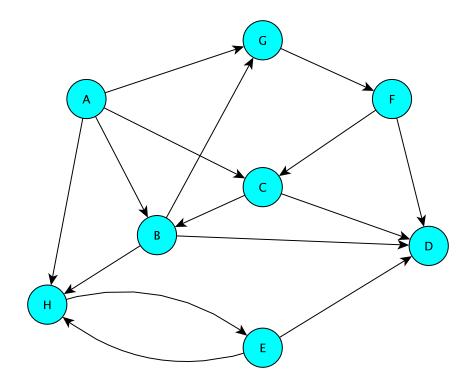
but now $e_i = (v_{i-1}, v_i)$: all edges *point along direction* of walk

- A, B, H, E, D is a walk from A to D
- It's also a (simple) path
- D, E, H, B, A is not a walk from D to A
- B, G, F, C, B is a (directed) cycle (it's a 4-cycle)
- So is H, E, H (a 2-cycle)



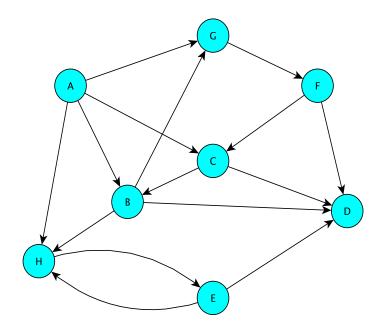
- D is reachable from A (via path A, B, D), but A is not reachable from D
- In fact, every vertex is reachable from A

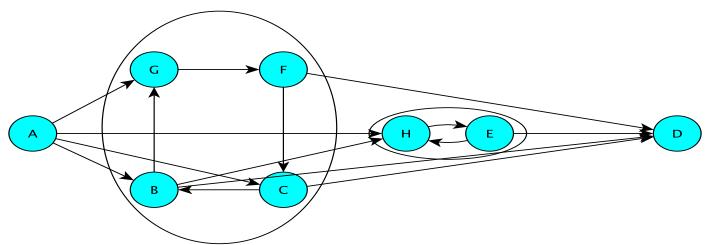
- A BFS of G from A visits every vertex
- A BFS of G from F visits all vertices but A
- A BFS of G from E visits only E, H, D



 Connectivity in directed graphs is more subtle than in undirected graphs!

- Vertices u and v are mutually reachable vertices if there are paths from u to v and v to u
- Maximal sets of mutually reachable vertices form the strongly connected components of G





Implementing Graphs

- Involves a number of implementation decisions, depending on intended uses
 - What kinds of graphs will be availabe?
 - Undirected, directed, mixed
 - What underlying data structures will be used?
 - What functionality will be provided
 - What aspects will be public/protected/private
- We'll focus on popular implementations for undirected and directed graphs (separately)

Graphs in structure5

- We want to store information at vertices and at edges, but we favor vertices
 - Let V and E represent the types of information held by vertices and edges respectively
 - Interface Graph<V,E> extends Structure<V>
 - Vertices are the building blocks; edges depend on them
- Type V holds a label for a (hidden) vertex type
- Type E holds a label for an (available) edge type
 - Label: Application-specific data for a vertex/edge

Graphs in structure5

- So, the methods described in the Structure<V>
 interface are about vertices (but also impact
 edges: e.g., clear())
- We'll want to add a number of similar methods to provide information about edges, and the graph itself

Recall: Desired Functionality

- What are the basic operations we need to describe algorithms on graphs?
 - Given vertices u and v: are they adjacent?
 - Given vertex v and edge e, are they incident?
 - Given an edge e, get its incident vertices (ends)
 - How many vertices are adjacent to v? (degree of v)
 - The vertices adjacent to v are called its neighbors
 - Get a list of the neighbors of v (or the edges incident with v)

Graph Interface Methods

- void add(V vtx), V remove(V vtx)
 - Add/remove vertex to/from graph
- void addEdge(V vtxI, V vtx2, E edgeLabel),
 E removeEdge(V vtxI, V vtx2)
 - Add/remove edge between vtx1 and vtx2
- boolean containsEdge(V vtx I, V vtx2)
 - Returns true iff there is an edge between vtx1 and vtx2
- Edge<V,E> getEdge(V vtx I, V vtx2)
 - Returns edge between vtx1 and vtx2
- void clear()
 - Remove all nodes (and edges) from graph

Graph Interface Methods

- boolean visit(V vertexLabel)
 - Mark vertex as "visited" and return previous value of visited flag
- boolean visitEdge(Edge<V,E> e)
 - Mark edge as "visited"
- boolean isVisited(V vtx), boolean isVisitedEdge(Edge<V,E> e)
 - Returns true iff vertex/edge has been visited
- Iterator<V> neighbors(V vtx I)
 - Get iterator for all neighbors of vtx l
 - For directed graphs, out-edges only
- Iterator<V> iterator()
 - Get vertex iterator
- void reset()
 - Remove visited flags for all nodes/edges

Edge Class

- Graph edges are defined in their own public class
 - Edge<V,E>(V vtx1, V vtx2,E label, boolean directed)
 - Construct a (possibly directed) edge between two labeled vertices (vtx1->vtx2)
- Useful methods:

```
label(), here(), there()
setLabel(), isVisited(), isDirected()
```

Reachability: Breadth-First Traversal

```
BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count \leftarrow 0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn't empty
        current \leftarrow Q.dequeue();
       for each unvisited neighbor u of current:
                add u to Q; mark u as visited; count++
return count;
```

Now compare value returned from BFS(G,v) to size of V

Breadth-First Traversal

```
int BFS(Graph<V,E> g, V src) {
  Queue<V> todo = new QueueList<V>(); int count = 0;
  g.visit(src); count++;
  todo.enqueue(src);
 while (!todo.isEmpty()) {
   V node = todo.dequeue();
    Iterator<V> neighbors = g.neighbors(node);
   while (neighbors.hasNext()) {
      V next = neighbors.next();
       if (!g.isVisited(next)) {
         g.visit(next); count++;
         todo.enqueue(next);
  return count;
```

Breadth-First Traversal of Edges

```
int BFS(Graph<V,E> g, V src) {
 Queue<V> todo = new QueueList<V>(); int count = 0;
 g.visit(src); count++;
 todo.enqueue(src);
 while (!todo.isEmpty()) {
   V node = todo.dequeue();
   Iterator<V> neighbors = g.neighbors(node);
   while (neighbors.hasNext()) {
      V next = neighbors.next();
      if (!g.isVisitedEdge(node,next)) g.visitEdge(next,node);
      if (!g.isVisited(next)) {
         g.visit(next); count++;
         todo.enqueue(next);
 return count;
```