CSCI 136
Data Structures &
Advanced Programming

Lecture 26
Fall 2019
Instructors: B&S

Administrative Details

e Lab 9: Super Lexicon is online
e Partners are permitted this week!

* Please fill out the form by tonight at midnight
e Lab 6 back

Today

e Lab 9

* Efficient Binary search trees (Ch [4)

 AVL Trees
* Height is O(log n), so all operations are O(log n)
* Red-Black Trees
e Different height-balancing idea: height is O(log n)
* All operations are O(log n)

Lab 9 : Lexicon

* Goal: Build a data structure that can efficiently
store and search a large set of words

* A special kind of tree called a trie

56 0o

Lab 9 : Tries

o A trie is a tree that stores words where
e Fach node holds a letter
* Some nodes are “word” nodes (dark circles)

* Any path from the root to a word node describes
one of the stored words

 All paths from the root form prefixes of stored
words (a word is considered a prefix of itself)

Tries

AN
SICEONC

Now add “dot” and “news”

Now remove “not” and “zen”

Tries

Lab 9 : Lexicon

An interface that provides the methods

public interface Lexicon {
public boolean addWord(String word);
public int addWordsFromFile(String filename);
public boolean removeWord(String word);
public int numWords();
public boolean containsWord(String word);
public boolean containsPrefix(String prefix);
public Iterator<String> iterator();
public Set<String> suggestCorrections(String

target, int maxDistance);

public Set<String> matchRegex(String pattern);

Lab 9

* Implement a program that creates, updates,
and searches a Lexicon

e Based on a LexiconTrie class

* Each node of the Trie is a LexiconNode
* Analogous to a SLL consisting of SLLNodes

* LexiconTrie implements the Lexicon Interface

e Supports
 adding/removing words
e searching for words and prefixes
* reading words from files

* Iterating over all words

AVL Trees

One of the first balanced binary tree structures
Definition: A binary tree T is an AVL tree if

|. T is the empty tree, or

2. T has left and right sub-trees T| and Ty such that
a) The heights of T and T differ by at most I, and
b) T, and Ty are AVL trees

AVL Trees

AVL Trees

* Balance Factor of a binary tree node:
* height of right subtree minus height of left subtree.

* A node with balance factor I, 0, or -1 is considered
balanced.

* A node with any other balance factor is considered
unbalanced and requires rebalancing the tree.

* Alternate Definition: An AVL Tree is a binary tree in
which every node is balanced.

AVL Trees have O(log n) Height

Theorem: An AVL tree on n nodes has height O(log n)

Proof idea

* Show that an AVL tree of height h has at least fib(h)
nodes (classic induction proof---try it!)

e Recall (HW): fib(h) = /)" ifh =10
e Son > (3/,)" and thus logs,,n = h

logy, n

* Recall that for any a,b > 0, log, n = log, a

e So log, n and logy, n are Big-O of one another
* So his O(log n)

We used Fibonacci numbers in a data structures proof!!!
14

AVL Trees

If adding to an AVL tree creates an unbalanced node A,
we rebalance the subtree with root A

This involves a constant-time restructuring of part of
the tree with root NA

The rebalancing steps are called tree rotations

Tree rotations preserve binary search tree structure

Single Right Rotation

Assume A is unbalanced but its subtrees are AVL...

Double Rotation |

Rotate left / @
+3

Y right at A
height k + 3
height k + 2

|7

height k

AVL Tree Facts

A tree that is AVL except at root, where root

balance factor equals *=2 can be rebalanced
with at most 2 rotations

add(v) requires at most O(log n) balance
factor changes and one (single or double)
rotation to restore AVL structure

remove(v) requires at most O(log n) balance
factor changes and (single or double) rotations
to restore AVL structure

An AVL tree on n nodes has height O(log n)

AVL Trees: One of Many

There are many strategies for tree balancing to
preserve O(log n) height, including

* AVL Trees: guaranteed O(log n) height
* Red-black trees: guaranteed O(log n) height

e B-trees (not binary): guaranteed O(log n) height
e 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

e Splay trees: Amortized O(log n) time operations

* Randomized trees: O(log n) expected height

A Red-Black Tree

(from Wikipedia.org)

e

& s

20

Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness
* Each node is colored red or black

* Coloring satisfies these rules
* All empty trees are black
* We consider them to be the leaves of the tree
e Children of red nodes are black

* All paths from a given node to it’s descendent leaves
have the same number of black nodes
 This is called the black height of the node

21

A Red-Black Tree

(from Wikipedia.org)

e

& s

22

Red-Black Trees

The coloring rules lead to the following result

Proposition: No leaf has depth more than twice
that of any other leaf.

This in turn can be used to show

Theorem: A Red-Black tree with n internal nodes
has height satisfying h < 2log(n + 1)

* Note: The tree will have exactly n+| (empty) leaves

e since each internal node has two children

23

Red-Black Trees

Theorem: A Red-Black tree with n internal nodes has
height satisfying h < 2log(n + 1)

Proof sketch: Note: we count empty tree nodes!

* |f root is red, recolor it black.

* Now merge red children into (black) parents
* Now n’ < n nodes and height h’ = h/2
* New tree has all children with degree 2, 3, or 4

e All leaves have depth exactly h’ and there are n+1 leaves

h

eSon+1= 2" solog,(n+1) = h’ZE

e Thus2log,(n+1) = h
Corollary: R-B trees with n nodes have height O(log n)

24

Red-Black Tree Insertion

/
/
/
/
/
‘/

Black empty leaves not drawn. 7 just added Black-height still 2.

25

Red-Black Tree Insertion

/
/
/
/
/
‘/

Black height still 2, color violation moved up

26

Red-Black Tree Insertion

Left rotation at 6, about to do right rotation

27

Red-Black Tree Insertion

/
/
/
/
/
‘

Right rotation at 20, black height broken, need to recolor

28

Red-Black Tree Insertion

/
/
/
/
/
‘/

Color conditions restored, black-height restored.

29

Balanced BSTs: What to Know

You can keep a BST of height O(log n)
* O(log n) insert, add, delete time

e Reasonably efficient implementation

AVL and red/black trees are balanced
Rotations

How AVL and red/black trees work (high level)
Why AVL and red/black trees are balanced

Don’t need to know rebalancing rules

30

Splay Trees

Splay trees are self-adjusting binary trees

e Each time a node is accessed, it is moved to
root position via rotations

* No metadata at all. Just rotate up each element
you access

31

Splay Trees

Splay trees are self-adjusting binary trees

e Each time a node is accessed, it is moved to
root position via rotations

* No guarantee of balance (or shallow height)
* But good amortized performance

Theorem: Any set of m operations (add, remove,
contains, get) on an n-node splay tree take at
most O(m log n) time.

* As good as an AVL or Red-Black Tree!

32

Splay Tree Rotations

Right Zig-Zig Rotation (left version too)

33

Specialized BSTs

* Sometimes | can make operations faster if |
know something about the data

* What if | have n nodes in my tree, but | only
ever access n’ of them. How fast can | make
accesses!

* O(log n)

* What if | use my tree as a stack---| only

remove the most recent thing | inserted!?

* O(l)

34

Dynamic Optimality

* Conjecture: For any sequence of access
operations, if the best possible Binary Search
Tree takes X operations, then a splay tree

takes O(X) operations

* Essentially: keeping no metadata, and with no
knowledge of the future, splay trees do as well
as a specialized tree that knows the whole
sequence in advance

35

Dynamic Optimality

* Conjecture: For any sequence of access
operations, if the best possible Binary Search
Tree takes X operations, then a splay tree
takes O(X) operations

* One consequence would be: splay trees can
handle stack or queue operations in O(l)
average operations like a DLL

36

Dynamic Optimality

* Open since 1985

* Recent progress [Levy Tarjan 2019]: if a splay
tree’s performance only improves when we
remove operations, then the splay tree is
dynamically optimal

37

Dynamic Optimality

* Some really cool math in this area

I ¢
.3 N

J
v
I\

6
é
>

Graphs Describe the World

Transportation Networks
Communication Networks
Molecular structures
Dependency structures
Scheduling

Matching

Graphics Modeling

39

i New York City Subway Diagram

‘Stations and connections Subway Services
i o 7 Avenue Local
s spe et o e o ot 7 Avenue Bxpress
[ap— 7 venoe Bxpross
ekt ek ooy
netvrs ry Loxington Avenus Express
iy gton Avenue Bxpross
- oo s s oy gfon Avenve Local
ot snics © 425totsusng Loca
ranstor E 8 Avenuo Expross
1 8 Avenue L
out-of st vanetor W & Juserua Local
B cactrose Long Island Sound - 6 Avenue Express
‘rogionsal il connection 7 6 Avenue Express.
Esst 143t wh & 6 Mwenue Local
- & Avenus Local
e n Locat
1 - s © crmsountacn
welll Nassau Siroet Local
E... (- Nassau Siroet Express
J— o © 14 Suoet-Canarsio Local
‘Cothocea Piwy | Cathocia Phary SO0 POk Hoh N Broadway Express.
Queens @ Broacey Exprase
s s u A R Broschiay Looa
s M B e W Broadway Local
sl s g G
.. Manhattan = s p © s
e " “s P rowigfl SIR Staton Isiand Rallway
.. PR [l Py Iy
e = D —— i) supin
I &
e e ———— e
8 y G e
x>] ("Q ToLen s samaica Ant s B &
" r 2 = ¢4 Ve Wyk s "Sutain Biva-JFK Aport &,
e cener st b | - ° s :
i LT e s [T T S
I e e N PPNy
g 10 048 T Lasingon s r—
v e comse e
o Wies | R e R
L R R
o 20l 08 Rl s S o
34 st Pochamay v
RS = e, I o River -
) S e e [y 4
o s ms t (Rase iz
sl o R 4 o —
i, - - S s g — socan
5 = o o
= \ : [rens——"y 4 ER— M [
N . wns| Wan P 4u e s
Hudson River 2 P> f ! s,
s LR | — « ol TN e A
e N o o I R el i v
i o | o= . g T ey 2 Foticmer
i 4 o 8 oo e e i e Ly . e e et N e
oo WM e == e gl rersen N o ;
J— rd H Yy, g Bron Channe f,e‘ S nsost
ezt a4 bcmast NG 4 -
s } o . Ny A
2 B N sy -
PATH 10 ek and okchen & e e Lots v
m— ey s N o "4
ol e y Y AW —
'E =y 4 T gt L.
] e s i B
aaios Gmens. S o 4 Ok Av & Kangston A S
e . 4
E— g s
New York Harbor P ™
w w7 e % :
R
J— 3 T e
B9 aiton iy I
W o ot
vl o T N
[N N R
st B\ Y R, Nakad b .
N 3 N et N
e RN s
sy e o p— \ g
p— AR e N -
Lo .
Y v ——
\ S 3 -
R A N O N * 7 ovgon e
- oo A, Pl
\ wae s Westa st Atlantic Ocean
e aysos NG Sff W

Nodes = subway stops; Edges = track between stops

Seattle.

Portland'j

SF |

)

LA

_ Dallas } - AEROR

Nodes = cities; Edges = rail lines connecting cities

41

Portland Seattle Boston

r - :
Denver Chicagc
SF ‘ .
NY
LA ©® ® :
Dallas Atlanta

Note: Connections in graph matter, not precise locations of nodes
42

SRI

STAN

UCLA

Internet (~1972)

43

Internet (~1998)

4
4

OAD

Word Game

CORD

WOLD

WARD

A

ony—or

CS Pre-requisite Structure (subset)

Al

Algorithms

/.

»

Discrete Math Theory of comp. » Compilers

Data Structures :
Programming Languages

Java
Operating Systems
Organization

n— Graphics

Nodes = courses; Edges = prerequisites ***

46

Wire-Frame Models

: S
= A
S
AR
-
i "
—

=
T
S
S
. —
G
—
= o
}\7
-
,\ %
J= =

o
e
e e 48
- e o X
- o AV 7
e \
N o
-
o
—r - -
’l
e

47

Basic Definitions & Concepts

Seq;ﬂg Bgsan
Portland F
SF Denver Chicago
LA ® o NY$
Dallas Atlanta

Def’n: An undirected graph G = (V,E) consists of two sets
*V : the vertices of G, and E : the edges of G

*Each edge e in E is defined by a set of two vertices: its incident
vertices. Ve write e = {u,v} and say that u and v are adjacent.

48

Walking Along a Graph

A walk from u to v in a graph G = (V,E) is an
alternating sequence of vertices and edges

u-= Yo, €15 Vs € Vo wee sy Vi €10 Vi -V

such that each e, ={v,, v, }fori=1, ..,k
Note a walk starts and ends on a vertex

If no edge appears more than once then
the walk is called a path

If no vertex appears more than once then
the walk is a simple path

49

Walking In Circles

* A closed walk in a graph G = (V,E) is a walk

Vor €15 V5 €2, V2, ey Vs €16 Vi

such that each v, = v,

* A circuit is a path where v, = v,
*No repeated edges

* A cycle is a simple path where v, = v,
*No repeated vertices (uhm, except for v,!)

* The length of any of these is the number of
edges in the sequence

50

Little Tiny Theorems

If there is a walk from u to v, then there is a
walk from v to u.

If there is a walk from u to v, then there is a
path from u to v (and from v to u)

If there is a path from u to v, then there is a
simple path from u to v (and v to u)

Every circuit through v contains a cycle
through v

Not every closed walk through v contains a
cycle through v! [Try to find an example!]

51

Another Useful Graph Fact

* Degree of a vertex v
* Number of edges incident to v
e Denoted by deg(v)

 Thm: For any graph G = (V,E)

Edeg(v)=2|EI

vevV

where |E| is the number of edges in G

* Proof Hint: Induction on |E|: How does
removing an edge change the equation!?

e Or: Count pairs (v,e) where v is incident with e

52

Reachability and Connectedness

Def'n: A vertex v in G is reachable from a
vertex u in G if there is a path fromu to v

v is reachable from u iff u is reachable from v

Defn: An undirected graph G is connected if
for every pair of vertices u, vin G, v is
reachable from u (and, of course, u from v)

The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

53

Distance in Undirected Graphs

Def: The distance between two vertices u and v in
an undirected graph G=(V,E) is the minimum of

the path lengths over all u-v paths.

* We write it as d(u,v). It satisfies the properties
° d(uu) =0, forallueV
e d(u,v) =d(vu), foralluveV
* d(u,v) < d(uw) + d(w,v), for all uy,weV

* This last property is called the triangle inequality

54

Algorithms on Graphs

* What are the basic operations we need to
describe algorithms on graphs?

Given vertices u and v: are they adjacent!?
Given vertex v and edge e, are they incident!
Given an edge e, get its incident vertices (ends)

How many vertices are adjacent to v! (degree of v)

* The vertices adjacent to v are called its neighbors

Get a list of the vertices adjacent to v

* From which we can get the edges incident with v

55

Basic Graph Algorithms

* We'll look at a number of graph algorithms

Connectedness: Is G connected!?
* If not, how many connected components does G have!

Cycle testing: Does G contain a cycle?

* Does G contain a cycle through a given vertex?

If the edges of G have costs:

* What is the cheapest connected subgraph of G that
contains every vertex!?

* What is a cheapest path from u to v!?

And more....

56

Testing Connectedness

* How can we determine whether G is
connected?

e Pick a vertex v; see if every vertex u is reachable
from v

e How could we do this?

* Visit the neighbors of v, then visit their neighbors,
etc. See if you reach all vertices

e Assume we can mark a vertex as ‘‘visited”

* How do we efficiently manage all this visiting?

57

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
Il pre: all vertices are marked as unvisited
count €0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current € Q.dequeue();

for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++

return count;

Now compare value returned from BFS(G,v) to size of V

58

BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u
reachable from v.

Proof: We’'ll show that if u is reachable from v
then BFS(G,v) visits u by induction on d = d(v,u)
e Base Case:d=0. Thenu =v.

* v is reachable from v and BFS(G,v) visits v

* Induction Hypothesis: For some d = 0, if d(u,v)
= d then BFS(G,v) visits u.

59

BFS Theorem

* Induction Step: Assume now that d(u,v) = d+1

e Letv=yvy e, V|, €, Vy, «.. , Vg, €441> Vg+] = U be a

path of length d+1 from v to u

e Thenv =vg e, Vv, €, Vy .., V4 is a path of length d
from v to v,

e By LLH., v, is visited by BFS(G,v) and put in Q

* So v4 will be dequeued and all of its unvisited
neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by
BFS(G,v) then u is reachable from v

60

BFS Reflections

The BFS algorithm traced out a tree T,: the
edges connecting a visited vertex to (as yet)
unvisited neighbors

T, is called a BFS tree of G with root v (or from v)
The vertices of T, are visited in level-order

Every path in T, from v to a vertex u is a
shortest possible path from v to u

e That is the path as length d(v,u)

6l

