CSCI 136
Data Structures &
Advanced Programming

Lecture 26
Fall 2019
Instructors: B&S

Administrative Details

e Lab 9: Super Lexicon is online

e Partners are permitted this week!

Last Time

* Efficient Binary search trees (Ch 14)

 AVL Trees
* Height is O(log n), so all operations are O(log n)
* Red-Black Trees
e Different height-balancing idea: height is O(log n)
* All operations are O(log n)

Today s Outline

e Lab 9: Super Lexicon

* Introduction To Graphs
* Basic Definitions and Properties

* Applications and Problems

Lab 9 : Lexicon

* Goal: Build a data structure that can efficiently
store and search a large set of words

* A special kind of tree called a trie

56 0o

Lab 9 : Tries

o A trie is a tree that stores words where
e Fach node holds a letter
* Some nodes are “word” nodes (dark circles)

* Any path from the root to a word node describes
one of the stored words

 All paths from the root form prefixes of stored
words (a word is considered a prefix of itself)

Tries

AN
SICEONC

Now add “dot” and “news”

Now remove “not” and “zen”

Tries

Lab 9 : Lexicon

An inteface that provides the methods

public interface Lexicon {

public
public
public
public
public
public
public
public

public

boolean addWord(String word) ;

int addWordsFromFile(String filename);
boolean removeWord(String word);

int numWords();

boolean containsWord(String word);
boolean containsPrefix(String prefix);
Iterator<String> iterator();
Set<String> suggestCorrections(String
target, int maxDistance);

Set<String> matchRegex(String pattern);

Lab 9

* Implement a program that creates, updates,
and searches a Lexicon

e Based on a LexiconTrie class

* Each node of the Trie is a LexiconNode
* Analogous to a SLL consisting of SLLNodes

* LexiconTrie implements the Lexicon Interface

e Supports
 adding/removing words
e searching for words and prefixes
* reading words from files

* Iterating over all words

Graphs Describe the World

Transportation Networks
Communication Networks
Molecular structures
Dependency structures
Scheduling

Matching

Graphics Modeling

e New York City Subway Diagram

Y Stations and connections ~ Subway Services.
s stops

aay tops, excep for s ours,peak aection

7 Avenue Express,

Lexington Avenue Expres:

Loxington Avenue Expross

Lexington Avenue Local

42 Street.Flushing Local

8 Avenuo Expross
8 Avenue Local

out ot staton vanster 8 Avenue Local

i
HH N

 coirase Long lsland Sound 6 Avenuo Expross
6 Avenuo Expross
& Avenue Local
& Avenue Local

ogions i connection 7

v

Grosstown Local

Pr—_ .

Nassau Stroot Local
Nassau Stroot Expross.

k13 < 14 Street-Canarsie Local

HH
® =302 G 00 O G000 @O © OO OO0

bt vy s I Jreve comets
Jo ey Broacuny Express
Queens Broadey Exprons
s e ancicn o Broadway Local
u s M o Sroaday Loca
e e P
.. Manhattan = s 5 st
“Nn. : e gl SIR Staten siand Raiway
| | - FE— el A A ey
) ° Taste) ="y 3 Ui Tumpive St
S C
\: “4 4 % S Consor
> 3 ToLen s amalca AvS et
Lncoi Corer r - Ve Wyk s "Sutoin Bl I ARpor
[a ° icn
- n ™ 50 30 cngn v e T g1
ETR ik e Losington Av &
LR R e o
Lan N
R | S
34 t o
IS S L R . s i River bt
s B R ¢
ELET o m&“ H B iz
et e e) (—
© T sy [t=ters
Nl Sl g
Hudson River R > o et et
— L - -
S Gl " Pmcost Sny-dstmyrie By ey At Howes st mm?’:mm uing v & L
i [f| .4 fi) . ; e A T iy’ Pt
i K] = e i e Ly . e e et \)
cana cowsr omo M Nomasd sy ey S S sy’
f—. - o e ot Pforn
S I LN - 7 o
e S~ | | |9 } cramoe s N sty iy g rernapuana e wen st
) e A
E L. Brooklyn A . sy
o Mo rockay — Bachest
e Crom s oo Fsuecn e Ln.... LY e 4
Tiott g e, gty
[mas] . o A & s
i ' u«m\ Dekalb v b
e oyt St Novins 51 4
o gl
15l I 155t 53 3
R
- R - p—
A S [
R e
i) b R
s on T > S
e N
==, B R W. ‘ N s
ez Wan RN -
] on on j— "
Boyonpe | a7 e N7 —
-
i [a——
\ b et
R 5 ot
s Neptne &4 by
\ Westa st Atlantic Ocean
- WY 408

Nodes = subway stops; Edges = track between stops

Seattle.

Portland'j

SF |

)

LA

_ Dallas } - AEROR

Nodes = cities; Edges = rail lines connecting cities

Portland Seattle Boston

r - :
Denver Chicagc
SF ‘ .
NY
LA ©® ® :
Dallas Atlanta

Note: Connections in graph matter, not precise locations of nodes
|5

SRI

STAN

UCLA

Internet (~1972)

Internet (~1998)

N~

OAD

Word Game

CORD

WOLD

WARD

A

ony—or

CS Pre-requisite Structure (subset)

Al

Algorithms

/.

»

Discrete Math Theory of comp. » Compilers

Data Structures :
Programming Languages

Java
Operating Systems
Organization

n— Graphics

Nodes = courses; Edges = prerequisites ***

Wire-Frame Models

: S
= A
S
AR
-
i "
—

=
T
S
S
. —
G
—
= o
}\7
-
,\ %
J= =

o
e
e e 48
- e o X
- o AV 7
e \
N o
-
o
—r - -
’l
e

20

Basic Definitions & Concepts

Seq;ﬂg Bgsan
Portland F
SF Denver Chicago
LA ® o NY$
Dallas Atlanta

Def’n: An undirected graph G = (V,E) consists of two sets
*V : the vertices of G, and E : the edges of G

*Each edge e in E is defined by a set of two vertices: its incident
vertices. Ve write e = {u,v} and say that u and v are adjacent.

21

Walking Along a Graph

A walk from u to v in a graph G = (V,E) is an
alternating sequence of vertices and edges

u-= Yo, €15 Vs € Vo wee sy Vi €10 Vi -V

such that each e, ={v,, v, }fori=1, ..,k
Note a walk starts and ends on a vertex

If no edge appears more than once then
the walk is called a path

If no vertex appears more than once then
the walk is a simple path

22

Walking In Circles

* A closed walk in a graph G = (V,E) is a walk

Vor €15 V5 €2, V2, ey Vs €16 Vi

such that each v, = v,

* A circuit is a path where v, = v,
*No repeated edges

* A cycle is a simple path where v, = v,
*No repeated vertices (uhm, except for v,!)

* The length of any of these is the number of
edges in the sequence

23

If t
wa

If t

Little Tiny Theorems

nere is a walk from u to v, then there is a
k from v to u.

nere is a walk from u to v, then there is a

path from u to v (and from v to u)

If there is a path from u to v, then there is a
simple path from u to v (and v to u)

Every circuit through v contains a cycle
through v

Not every closed walk through v contains a
cycle through v! [Try to find an example!]

24

Another Useful Graph Fact

* Degree of a vertex v
* Number of edges incident to v
e Denoted by deg(v)

 Thm: For any graph G = (V,E)

Edeg(v)=2|EI

vevV

where |E| is the number of edges in G

* Proof Hint: Induction on |E|: How does
removing an edge change the equation!?

e Or: Count pairs (v,e) where v is incident with e

25

Reachability and Connectedness

Def'n: A vertex v in G is reachable from a
vertex u in G if there is a path fromu to v

v is reachable from u iff u is reachable from v

Defn: An undirected graph G is connected if
for every pair of vertices u, vin G, v is
reachable from u (and, of course, u from v)

The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

26

Distance in Undirected Graphs

Def: The distance between two vertices u and v in
an undirected graph G=(V,E) is the minimum of

the path lengths over all u-v paths.

* We write it as d(u,v). It satisfies the properties
° d(uu) =0, forallueV
e d(u,v) =d(vu), foralluveV
* d(u,v) < d(uw) + d(w,v), for all uy,weV

* This last property is called the triangle inequality

27

Algorithms on Graphs

* What are the basic operations we need to
describe algorithms on graphs?

Given vertices u and v: are they adjacent!?
Given vertex v and edge e, are they incident!
Given an edge e, get its incident vertices (ends)

How many vertices are adjacent to v! (degree of v)

* The vertices adjacent to v are called its neighbors

Get a list of the vertices adjacent to v

* From which we can get the edges incident with v

28

Basic Graph Algorithms

* We'll look at a number of graph algorithms

Connectedness: Is G connected!?
* If not, how many connected components does G have!

Cycle testing: Does G contain a cycle?

* Does G contain a cycle through a given vertex?

If the edges of G have costs:

* What is the cheapest connected subgraph of G that
contains every vertex!?

* What is a cheapest path from u to v!?

And more....

29

Testing Connectedness

* How can we determine whether G is
connected?

e Pick a vertex v; see if every vertex u is reachable
from v

e How could we do this?

* Visit the neighbors of v, then visit their neighbors,
etc. See if you reach all vertices

e Assume we can mark a vertex as ‘‘visited”

* How do we efficiently manage all this visiting?

30

Reachability: Breadth-First Search

BIS(G, v) /7 Do a breadth-first search of G starting at v

// pre: all vertices are marked as unvisited
count €< 0:

Create empty queue (J; engueue v; mark v as visited; count++

While Q isn t empty
current < ().dequeue();
Jor each unvisited neighbor u of current :

add u to Q; mark u as vistted: count++
relurn count:

Now compare value returned from BFS(G,v) to size of V

31

BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u
reachable from v.

Proof: We’'ll show that if u is reachable from v
then BFS(G,v) visits u by induction on d = d(v,u)
e Base Case:d=0. Thenu =v.

* v is reachable from v and BFS(G,v) visits v

* Induction Hypothesis: For some d = 0, if d(u,v)
= d then BFS(G,v) visits u.

32

BFS Theorem

* Induction Step: Assume now that d(u,v) = d+1

e Letv=yvy e, V|, €, Vy, «.. , Vg, €441> Vg+] = U be a

path of length d+1 from v to u

e Thenv =vg e, Vv, €, Vy .., V4 is a path of length d
from v to v,

e By LLH., v, is visited by BFS(G,v) and put in Q

* So v4 will be dequeued and all of its unvisited
neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by
BFS(G,v) then u is reachable from v

33

BFS Reflections

The BFS algorithm traced out a tree T,: the
edges connecting a visited vertex to (as yet)
unvisited neighbors

T, is called a BFS tree of G with root v (or from v)
The vertices of T, are visited in level-order

Every path in T, from v to a vertex u is a
shortest possible path from v to u

e That is, the path has length d(v,u)

34

