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Administrative Details

e Lab 9: Super Lexicon is online

e Partners are permitted this week!



Last Time

* Efficient Binary search trees (Ch 14)

 AVL Trees
* Height is O(log n), so all operations are O(log n)
* Red-Black Trees
e Different height-balancing idea: height is O(log n)
* All operations are O(log n)



Today s Outline

e Lab 9: Super Lexicon

* Introduction To Graphs
* Basic Definitions and Properties

* Applications and Problems



Lab 9 : Lexicon

* Goal: Build a data structure that can efficiently
store and search a large set of words

* A special kind of tree called a trie
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Lab 9 : Tries

o A trie is a tree that stores words where
e Fach node holds a letter
* Some nodes are “word” nodes (dark circles)

* Any path from the root to a word node describes
one of the stored words

 All paths from the root form prefixes of stored
words (a word is considered a prefix of itself)



Tries
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Now add “dot” and “news”



Now remove “not” and “zen”



Tries



Lab 9 : Lexicon

An inteface that provides the methods

public interface Lexicon {

public
public
public
public
public
public
public
public

public

boolean addWord(String word) ;

int addWordsFromFile(String filename);
boolean removeWord(String word);

int numWords();

boolean containsWord(String word);
boolean containsPrefix(String prefix);
Iterator<String> iterator();
Set<String> suggestCorrections(String
target, int maxDistance);

Set<String> matchRegex(String pattern);



Lab 9

* Implement a program that creates, updates,
and searches a Lexicon

e Based on a LexiconTrie class

* Each node of the Trie is a LexiconNode
* Analogous to a SLL consisting of SLLNodes

* LexiconTrie implements the Lexicon Interface

e Supports
 adding/removing words
e searching for words and prefixes
* reading words from files

* Iterating over all words



Graphs Describe the World

Transportation Networks
Communication Networks
Molecular structures
Dependency structures
Scheduling

Matching

Graphics Modeling
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Nodes = subway stops; Edges = track between stops



Seattle.

Portland'j

SF |
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Nodes = cities; Edges = rail lines connecting cities



Portland Seattle Boston
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Note: Connections in graph matter, not precise locations of nodes
|5



SRI

STAN

UCLA

Internet (~1972)




Internet (~1998)
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OAD

Word Game

CORD

WOLD

WARD

A
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CS Pre-requisite Structure (subset)

Al

Algorithms

/.

»

Discrete Math Theory of comp. » Compilers

Data Structures :
Programming Languages

Java
Operating Systems
Organization

n— Graphics

Nodes = courses; Edges = prerequisites ***



Wire-Frame Models
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Basic Definitions & Concepts

Seq;ﬂg Bgsan
Portland F
SF Denver Chicago
LA ® o NY$
Dallas Atlanta

Def’n: An undirected graph G = (V,E) consists of two sets
*V : the vertices of G, and E : the edges of G

*Each edge e in E is defined by a set of two vertices: its incident
vertices. Ve write e = {u,v} and say that u and v are adjacent.
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Walking Along a Graph

A walk from u to v in a graph G = (V,E) is an
alternating sequence of vertices and edges

u-= Yo, €15 Vs € Vo wee sy Vi €10 Vi -V

such that each e, ={v,, v, }fori=1, ..,k
Note a walk starts and ends on a vertex

If no edge appears more than once then
the walk is called a path

If no vertex appears more than once then
the walk is a simple path
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Walking In Circles

* A closed walk in a graph G = (V,E) is a walk

Vor €15 V5 €2, V2, ey Vs €16 Vi

such that each v, = v,

* A circuit is a path where v, = v,
*No repeated edges

* A cycle is a simple path where v, = v,
*No repeated vertices (uhm, except for v,!)

* The length of any of these is the number of
edges in the sequence
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Little Tiny Theorems

nere is a walk from u to v, then there is a
k from v to u.

nere is a walk from u to v, then there is a

path from u to v (and from v to u)

If there is a path from u to v, then there is a
simple path from u to v (and v to u)

Every circuit through v contains a cycle
through v

Not every closed walk through v contains a
cycle through v! [Try to find an example!]
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Another Useful Graph Fact

* Degree of a vertex v
* Number of edges incident to v
e Denoted by deg(v)

 Thm: For any graph G = (V,E)

Edeg(v)=2|EI

vevV

where |E| is the number of edges in G

* Proof Hint: Induction on |E|: How does
removing an edge change the equation!?

e Or: Count pairs (v,e) where v is incident with e

25



Reachability and Connectedness

Def'n: A vertex v in G is reachable from a
vertex u in G if there is a path fromu to v

v is reachable from u iff u is reachable from v

Defn: An undirected graph G is connected if
for every pair of vertices u, vin G, v is
reachable from u (and, of course, u from v)

The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

26



Distance in Undirected Graphs

Def: The distance between two vertices u and v in
an undirected graph G=(V,E) is the minimum of

the path lengths over all u-v paths.

* We write it as d(u,v). It satisfies the properties
° d(uu) =0, forallueV
e d(u,v) =d(vu), foralluveV
* d(u,v) < d(uw) + d(w,v), for all uy,weV

* This last property is called the triangle inequality
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Algorithms on Graphs

* What are the basic operations we need to
describe algorithms on graphs?

Given vertices u and v: are they adjacent!?
Given vertex v and edge e, are they incident!
Given an edge e, get its incident vertices (ends)

How many vertices are adjacent to v! (degree of v)

* The vertices adjacent to v are called its neighbors

Get a list of the vertices adjacent to v

* From which we can get the edges incident with v
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Basic Graph Algorithms

* We'll look at a number of graph algorithms

Connectedness: Is G connected!?
* If not, how many connected components does G have!

Cycle testing: Does G contain a cycle?

* Does G contain a cycle through a given vertex?

If the edges of G have costs:

* What is the cheapest connected subgraph of G that
contains every vertex!?

* What is a cheapest path from u to v!?

And more....
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Testing Connectedness

* How can we determine whether G is
connected?

e Pick a vertex v; see if every vertex u is reachable
from v

e How could we do this?

* Visit the neighbors of v, then visit their neighbors,
etc. See if you reach all vertices

e Assume we can mark a vertex as ‘‘visited”

* How do we efficiently manage all this visiting?
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Reachability: Breadth-First Search

BIS(G, v) /7 Do a breadth-first search of G starting at v

// pre: all vertices are marked as unvisited
count €< 0:

Create empty queue (J; engueue v; mark v as visited; count++

While Q isn t empty
current < ().dequeue();
Jor each unvisited neighbor u of current :

add u to Q; mark u as vistted: count++
relurn count:

Now compare value returned from BFS(G,v) to size of V
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BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u
reachable from v.

Proof: We’'ll show that if u is reachable from v
then BFS(G,v) visits u by induction on d = d(v,u)
e Base Case:d=0. Thenu =v.

* v is reachable from v and BFS(G,v) visits v

* Induction Hypothesis: For some d = 0, if d(u,v)
= d then BFS(G,v) visits u.
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BFS Theorem

* Induction Step: Assume now that d(u,v) = d+1

e Letv=yvy e, V|, €, Vy, «.. , Vg, €441> Vg+] = U be a

path of length d+1 from v to u

e Thenv =vg e, Vv, €, Vy .., V4 is a path of length d
from v to v,

e By LLH., v, is visited by BFS(G,v) and put in Q

* So v4 will be dequeued and all of its unvisited
neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by
BFS(G,v) then u is reachable from v
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BFS Reflections

The BFS algorithm traced out a tree T,: the
edges connecting a visited vertex to (as yet)
unvisited neighbors

T, is called a BFS tree of G with root v (or from v)
The vertices of T, are visited in level-order

Every path in T, from v to a vertex u is a
shortest possible path from v to u

e That is, the path has length d(v,u)
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