
CSCI 136
Data Structures &

Advanced Programming

Lecture 26
Fall 2019

Instructors: B&S

2

Administrative Details

• Lab 9: Super Lexicon is online
• Partners are permitted this week!

2

3

Last Time

• Efficient Binary search trees (Ch 14)
• AVL Trees

• Height is O(log n), so all operations are O(log n)

• Red-Black Trees
• Different height-balancing idea: height is O(log n)

• All operations are O(log n)

4

Today’s Outline

• Lab 9: Super Lexicon
• Introduction To Graphs
• Basic Definitions and Properties
• Applications and Problems

5

Lab 9 : Lexicon

• Goal: Build a data structure that can efficiently
store and search a large set of words

• A special kind of tree called a trie

2

Implementing the Lexicon as a trie

There are several different data structures you could use to implement a lexicon— a sorted array, a
linked list, a binary search tree, a hashtable, and many others. Each of these offers tradeoffs between
the speed of word and prefix lookup, amount of memory required to store the data structure, the
ease of writing and debugging the code, performance of add/remove, and so on. The implementation
we will use is a special kind of tree called a trie (pronounced "try"), designed for just this purpose.

A trie is a letter-tree that efficiently stores strings. A node in a trie represents a letter. A path through
the trie traces out a sequence of letters that represent a prefix or word in the lexicon.

Instead of just two children as in a binary tree, each trie node has potentially 26 child pointers (one
for each letter of the alphabet). Whereas searching a binary search tree eliminates half the words
with a left or right turn, a search in a trie follows the child pointer for the next letter, which narrows
the search to just words starting with that letter. For example, from the root, any words that begin
with n can be found by following the pointer to the n child node. From there, following o leads to
just those words that begin with no and so on recursively. If two words have the same prefix, they
share that initial part of their paths. This saves space since there are typically many shared prefixes
among words. Each node has a boolean isWord flag which indicates that the path taken from the
root to this node represents a word. Here's a conceptual picture of a small trie:

Start

A N Z

E

NT

S

E

R E O

W

The thick border around a node indicates its isWord flag is true. This trie contains the words: a,
are, as, new, no, not, and zen. Strings such as ze or ar are not valid words for this trie
because the path for those strings ends at a node where isWord is false. Any path not drawn is
assumed to not exist, so strings such as cat or next are not valid because there is no such path in
this trie.

Like other trees, a trie is a recursive data structure. All of the children of a given trie node are
themselves smaller tries. You will be making good use of your recursion skills when operating on
the trie!

Managing node children

For each node in the trie, you need a list of pointers to children nodes. In the sample trie drawn
above, the root node has three children, one each for the letters A, N, and Z. One possibility for
storing the children pointers is a statically-sized 26-member array of pointers to nodes, where
array[0] is the child for A, array[1] refers to B, ... and array[25] refers to Z. When there is no child
for a given letter, (such as from Z to X) the array entry would be NULL. This arrangement makes it
trivial to find the child for a given letter, you simply access the correct element in the array by letter
index. However, for most nodes within the trie, very few of the 26 pointers are needed, so using a
largely NULL 26-member array is much too expensive. Better alternatives would be a dynamically-
sized array which can grow and shrink as needed, a linked list of children pointers, or leveraging the
standard classes in our toolkit, such as a Vector or Set, to store the children pointers. We leave the
final choice of a space-efficient design up to you, but you should justify the choice you make in
your program comments. Two things you may want to consider: there are at most 26 children, so
even a O(N) operation to find a particular child is no big deal, and operations such as writing the

6

Lab 9 : Tries

• A trie is a tree that stores words where
• Each node holds a letter
• Some nodes are “word” nodes (dark circles)

• Any path from the root to a word node describes
one of the stored words

• All paths from the root form prefixes of stored
words (a word is considered a prefix of itself)

7

Tries

2

Implementing the Lexicon as a trie

There are several different data structures you could use to implement a lexicon— a sorted array, a
linked list, a binary search tree, a hashtable, and many others. Each of these offers tradeoffs between
the speed of word and prefix lookup, amount of memory required to store the data structure, the
ease of writing and debugging the code, performance of add/remove, and so on. The implementation
we will use is a special kind of tree called a trie (pronounced "try"), designed for just this purpose.

A trie is a letter-tree that efficiently stores strings. A node in a trie represents a letter. A path through
the trie traces out a sequence of letters that represent a prefix or word in the lexicon.

Instead of just two children as in a binary tree, each trie node has potentially 26 child pointers (one
for each letter of the alphabet). Whereas searching a binary search tree eliminates half the words
with a left or right turn, a search in a trie follows the child pointer for the next letter, which narrows
the search to just words starting with that letter. For example, from the root, any words that begin
with n can be found by following the pointer to the n child node. From there, following o leads to
just those words that begin with no and so on recursively. If two words have the same prefix, they
share that initial part of their paths. This saves space since there are typically many shared prefixes
among words. Each node has a boolean isWord flag which indicates that the path taken from the
root to this node represents a word. Here's a conceptual picture of a small trie:

Start

A N Z

E

NT

S

E

R E O

W

The thick border around a node indicates its isWord flag is true. This trie contains the words: a,
are, as, new, no, not, and zen. Strings such as ze or ar are not valid words for this trie
because the path for those strings ends at a node where isWord is false. Any path not drawn is
assumed to not exist, so strings such as cat or next are not valid because there is no such path in
this trie.

Like other trees, a trie is a recursive data structure. All of the children of a given trie node are
themselves smaller tries. You will be making good use of your recursion skills when operating on
the trie!

Managing node children

For each node in the trie, you need a list of pointers to children nodes. In the sample trie drawn
above, the root node has three children, one each for the letters A, N, and Z. One possibility for
storing the children pointers is a statically-sized 26-member array of pointers to nodes, where
array[0] is the child for A, array[1] refers to B, ... and array[25] refers to Z. When there is no child
for a given letter, (such as from Z to X) the array entry would be NULL. This arrangement makes it
trivial to find the child for a given letter, you simply access the correct element in the array by letter
index. However, for most nodes within the trie, very few of the 26 pointers are needed, so using a
largely NULL 26-member array is much too expensive. Better alternatives would be a dynamically-
sized array which can grow and shrink as needed, a linked list of children pointers, or leveraging the
standard classes in our toolkit, such as a Vector or Set, to store the children pointers. We leave the
final choice of a space-efficient design up to you, but you should justify the choice you make in
your program comments. Two things you may want to consider: there are at most 26 children, so
even a O(N) operation to find a particular child is no big deal, and operations such as writing the

Now add “dot” and “news”

8

Tries

3

words to a file need to access the words in alphabetical order, so keeping the list of children
pointers sorted by letter will be advantageous.

Searching for words and prefixes

Searching the trie for words and prefixes is a matter of tracing out the path letter by letter. Let's
consider a few examples on the sample trie shown previously. To determine if the string new is a
word, start at the root node and examine its children to find one pointing to n. Once found, recur on
matching the remainder string ew. Find e among its children, follow its pointer, and recur again to
match w. Once we arrive at the w node, there are no more letters remaining in the input, so this is the
last node. The isWord field of this node is true, indicating that the path to this node is a word
contained in the lexicon.

Alternatively, search for ar. The path exists and we can trace our way through all letters, but the
isWord field on the last node is false, which indicates that this path is not a word. (It is, however, a
prefix of other words in the trie). Searching for nap follows n away from the root, but finds no a
child leading from there, so the path for this string does not exist in the trie and it is neither a word
nor a prefix in this trie.

All paths through the trie eventually lead to a valid node (a node where isWord has value true).
Therefore determining whether a string is a prefix of at least one word in the trie is simply a matter
of verifying that the path for the prefix exists.

Adding words

Adding a new word into the trie is a matter of tracing out its path starting from the root, as if
searching. If any part of the path does not exist, the missing nodes must be added to the trie. Lastly,
the isWord flag is turned on for the final node. In some situations, adding a new word will
necessitate adding a new node for each letter, for example, adding the word dot to our sample trie
will add three new nodes, one for each letter. On the other hand, adding the word news would only
require adding an s child to the end of existing path for new. Adding the word do after dot has
been added doesn't require any new nodes at all, just turning on the flag on an existing node. Here
is the sample trie after those three words have been added:

Start

A N Z

E

NT

S

E

R E O

W

S

D

O

T

A trie is an unusual data structure in that its performance can improve as it becomes more loaded.
Instead of slowing down as its get full, it becomes faster to add words when they can share
common prefix nodes with words already in the trie.

Removing words

The first step to removing a word is tracing out its path and turning off the isWord flag on the final
node. However, your work is not yet done because you need to remove any part of the word that is

Now remove “not” and “zen”

9

Tries

4

now a dead end. All paths in the trie must eventually lead to a word. If the word being removed was
the only valid word along this path, the nodes along that path must be deleted from the trie along
with the word. For example, if you removed the words zen and not from the trie shown previously,
you should have the result below.

Start

A N

S

E

R E O

W

S

D

O

T

As a general observation, there should never be a leaf node whose isWord field is false. If a node
has no children and does not represent a valid word (i.e., isWord is false), then this node is not
part of any path to a valid word in the trie and such nodes should be deleted when removing a word.
In some cases, removing a word from the trie may not require removing any nodes. For example, if
we were to remove the word new from the above trie, it turns off isWord but all nodes along that
path are still in use for other words.

Important note: when removing a word from the trie, the only nodes that may require deallocation
are nodes on the path to the word that was removed. It would be extremely inefficient if you were to
traverse the whole trie to check for deallocating nodes every time a word was removed, and you
should not use such an inefficient strategy.

Other trie operations

There are few remaining odds and ends to the trie implementation. Creating an iterator and writing
the words to a file both involve a recursive exploration of all paths through the trie to find all of the
contained words. Remember that in both cases it is only words (not prefixes) that you want to
operate on and that these operations need to access the words in alphabetical order.

Once you have a working lexicon, you're ready to implement the snazzy spelling correction
features. There are two additional Lexicon member functions, one for suggesting simple corrections
and the second for regular expressions matching:

Set<string> *SuggestCorrections(string target, int maxDistance);

Set<string> *MatchRegex(string pattern);

Suggesting corrections

First consider the member function SuggestCorrections. Given a (potentially misspelled) target
string and a maximum distance, this function gathers the set of words from the lexicon that have a
distance to the target string less than or equal to the given maxDistance. We define the distance
between two equal-length strings to be the total number of character positions in which the strings
differ. For example, "place" and "peace" have distance 1, "place" and "plank" have distance 2. The
returned set contains all words in the lexicon that are the same length as the target string and are
within the maximum distance.

10

Lab 9 : Lexicon

An inteface that provides the methods
public interface Lexicon {

public boolean addWord(String word);
public int addWordsFromFile(String filename);
public boolean removeWord(String word);
public int numWords();
public boolean containsWord(String word);
public boolean containsPrefix(String prefix);
public Iterator<String> iterator();
public Set<String> suggestCorrections(String

target, int maxDistance);
public Set<String> matchRegex(String pattern);

}

11

Lab 9

• Implement a program that creates, updates,
and searches a Lexicon
• Based on a LexiconTrie class

• Each node of the Trie is a LexiconNode
• Analogous to a SLL consisting of SLLNodes

• LexiconTrie implements the Lexicon Interface
• Supports

• adding/removing words
• searching for words and prefixes

• reading words from files
• Iterating over all words

12

Graphs Describe the World

• Transportation Networks
• Communication Networks
• Molecular structures
• Dependency structures
• Scheduling
• Matching
• Graphics Modeling
•

13
Nodes = subway stops; Edges = track between stops

14

Seattle

Portland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Nodes = cities; Edges = rail lines connecting cities

15

SeattlePortland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Note: Connections in graph matter, not precise locations of nodes

16

SRI

STAN

UCLA

RAND

UTAH

CMU

NRL

HARV

MIT

BBN

Internet (~1972)

17

Internet (~1998)

18

WORD

CORD

WARD

WOAD

WOLD

WOOD

LORDFORD

WORM

WORE WORK

WORN WORT

Word Game

19

Java

Data Structures

Organization

Discrete Math Theory of comp.

Algorithms

Programming Languages

Operating Systems

AI

Compilers

Graphics

CS Pre-requisite Structure (subset)

Nodes = courses; Edges = prerequisites ***

20

Wire-Frame Models

21

Portland

Dallas Atlanta

Seattle

SF

LA

Denver Chicago

NY

Boston

Def’n: An undirected graph G = (V,E) consists of two sets

•V : the vertices of G, and E : the edges of G

•Each edge e in E is defined by a set of two vertices: its incident
vertices. We write e = {u,v} and say that u and v are adjacent.

Basic Definitions & Concepts

22

Walking Along a Graph

• A walk from u to v in a graph G = (V,E) is an
alternating sequence of vertices and edges

u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

such that each ei = {vi , vi+1} for i = 1, ... , k

• Note a walk starts and ends on a vertex

• If no edge appears more than once then
the walk is called a path

• If no vertex appears more than once then
the walk is a simple path

23

Walking In Circles

• A closed walk in a graph G = (V,E) is a walk
v0, e1, v1, e2, v2, ... , vk-1, ek, vk

such that each v0 = vk

• A circuit is a path where v0 = vk
•No repeated edges

• A cycle is a simple path where v0 = vk
•No repeated vertices (uhm, except for v0!)

• The length of any of these is the number of
edges in the sequence

24

Little Tiny Theorems

• If there is a walk from u to v, then there is a
walk from v to u.

• If there is a walk from u to v, then there is a
path from u to v (and from v to u)

• If there is a path from u to v, then there is a
simple path from u to v (and v to u)

• Every circuit through v contains a cycle
through v

• Not every closed walk through v contains a
cycle through v! [Try to find an example!]

25

Another Useful Graph Fact

• Degree of a vertex v
• Number of edges incident to v
• Denoted by deg(v)

• Thm: For any graph G = (V,E)

where |E| is the number of edges in G
• Proof Hint: Induction on |E|: How does

removing an edge change the equation?
• Or: Count pairs (v,e) where v is incident with e

deg(v)
v∈V
∑ = 2 | E |

26

Reachability and Connectedness

• Def’n: A vertex v in G is reachable from a
vertex u in G if there is a path from u to v

• v is reachable from u iff u is reachable from v
• Def’n: An undirected graph G is connected if

for every pair of vertices u, v in G, v is
reachable from u (and, of course, u from v)

• The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

27

Distance in Undirected Graphs

Def: The distance between two vertices u and v in
an undirected graph G=(V,E) is the minimum of
the path lengths over all u-v paths.

• We write it as d(u,v). It satisfies the properties
• d(u,u) = 0, for all u∈ V

• d(u,v) = d(v,u), for all u,v∈ V

• d(u,v) ≤ d(u,w) + d(w,v), for all u,v,w∈ V

• This last property is called the triangle inequality

28

Algorithms on Graphs

• What are the basic operations we need to
describe algorithms on graphs?
• Given vertices u and v: are they adjacent?

• Given vertex v and edge e, are they incident?
• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (degree of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the vertices adjacent to v
• From which we can get the edges incident with v

29

Basic Graph Algorithms

• We’ll look at a number of graph algorithms
• Connectedness: Is G connected?

• If not, how many connected components does G have?

• Cycle testing: Does G contain a cycle?
• Does G contain a cycle through a given vertex?

• If the edges of G have costs:
• What is the cheapest connected subgraph of G that

contains every vertex?

• What is a cheapest path from u to v?

• And more....

30

Testing Connectedness

• How can we determine whether G is
connected?
• Pick a vertex v; see if every vertex u is reachable

from v

• How could we do this?
• Visit the neighbors of v, then visit their neighbors,

etc. See if you reach all vertices
• Assume we can mark a vertex as “visited”

• How do we efficiently manage all this visiting?

31

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++
return count;

Now compare value returned from BFS(G,v) to size of V

32

BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u
reachable from v.
Proof: We’ll show that if u is reachable from v
then BFS(G,v) visits u by induction on d = d(v,u)
• Base Case: d = 0. Then u = v.
• v is reachable from v and BFS(G,v) visits v

• Induction Hypothesis: For some d ≥ 0, if d(u,v)
= d then BFS(G,v) visits u.

33

BFS Theorem

• Induction Step: Assume now that d(u,v) = d+1
• Let v = v0, e1, v1, e2, v2, ... , vd, ed+1, vd+1 = u be a

path of length d+1 from v to u
• Then v = v0, e1, v1, e2, v2, ... , vd is a path of length d

from v to vd

• By I.H., vd is visited by BFS(G,v) and put in Q
• So vd will be dequeued and all of its unvisited

neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by
BFS(G,v) then u is reachable from v

34

BFS Reflections

• The BFS algorithm traced out a tree Tv: the
edges connecting a visited vertex to (as yet)
unvisited neighbors

• Tv is called a BFS tree of G with root v (or from v)
• The vertices of Tv are visited in level-order

• Every path in Tv from v to a vertex u is a
shortest possible path from v to u
• That is, the path has length d(v,u)

