CSCI 136 Data Structures & Advanced Programming

> Lecture 25 Fall 2019 Instructor: Bill & Sam

Administrative Details

- Problem Set 3 due now
 - Hand in at the end of class
 - Late days are an option
- Lab 8 due Sunday (9 out right after)

Today

• Introduction to Binary Search Trees (BSTs)

Improving on OrderedVector

- The OrderedVector class provides O(log n) time searching for a group of n comparable objects
 - add() and remove(), though, take O(n) time in the worst case---and on average!
- Can we improve on those running times without sacrificing the O(log n) search time?
- Let's find out....

Binary Trees and Orders

- Binary trees impose multiple orderings on their elements (pre-/in-/post-/level-orders)
- In particular, in-order traversal suggests a natural way to hold comparable items
 - For each node v in tree
 - All values in left subtree of v are at most v
 - All values in right subtree of v are at least v
- This leads us to...

Binary Search Trees

- Binary search trees maintain a *total* ordering among elements (assumes comparability)
- Definition: A BST T is either:
 - Empty
 - Has root r with subtrees T_L and T_R such that
 - All nodes in T_L have smaller value than r
 - All nodes in T_R have larger value than r
 - T_L and T_R are also BSTs

BST Observations

- The same data can be represented by many BST shapes
- Searching for a value in a BST takes time proportional to the height of the tree
 - Reminder: trees have height, nodes have depth
- Additions to a BST happen at nodes missing at least one child (*a constraint*!)
- Removing from a BST can involve *any* node

BST Operations

- BSTs will implement the OrderedStructure Interface
 - add(E item)
 - contains(E item)
 - get(E item)
 - remove(E item)
 - Runtime of above operations?
 - All O(h) where h is the tree height
 - iterator()
 - This will provide an in-order traversal

BST Implementation

- The BST holds the following items
 - BinaryTree root: the root of the tree
 - BinaryTree EMPTY: a static empty BinaryTree
 - To use for all empty nodes of tree
 - int count: the number of nodes in the BST
 - Comparator<E> ordering: for comparing nodes
 - Note: E must implement Comparable
- Two constructors: One takes a Comparator
 - Other creates a NaturalComparatot

BST Implementation: locate

- Several methods search the tree
 - add, remove, contains
- We factor out common code: locate method
- protected locate(BinaryTree<E> node, E v)
 - Returns a BinaryTree<E> in the subtree with root n such that either
 - *n* has its value equal to *v*, or
 - v is not in this subtree and n is the node whose child v should be
- How would we implement locate()?

BST Implementation: locate

BinaryTree locate(BinaryTree root, E val) if root's value equals val return root child \leftarrow child of root whose subtree should hold val if child is emptry tree, return root // val not in subtree based at root else //keep looking return locate(child, val)

BST Implementation: locate

• What about this line?

child \leftarrow child of root whose subtree should hold value

- If the tree can have multiple nodes with same value, then we need to be careful
- Convention: During add operation, only move to right subtree if value to be added is greater than value at node
- We'll look at add later
- Let's look at *locate* now....

The code : locate

protected BinaryTree<E> locate(BinaryTree<E> root, E value) {
 E rootValue = root.value();
 BinaryTree<E> child;

```
// found at root: done
```

if (rootValue.equals(value)) return root;

```
// look left if less-than, right if greater-than
```

if (ordering.compare(rootValue,value) < 0)
 child = root.right();</pre>

else

}

```
child = root.left();
```

```
// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) return root;
else
    return locate(child, value);
```

Other core BST methods

- locate(v) returns either a node containing v or a node where v can be added as a child
- locate() is used by
 - public boolean contains(E value)
 - public E get(E value)
 - public void add(E value)
 - Public void remove(E value)
- Some of these also use another utility method
 - protected BT predecessor(BT root)
- Let's look at contains() first...

Contains

public boolean contains(E value){

}

if (root.isEmpty()) return false;

BinaryTree<E> possibleLocation = locate(root,value);

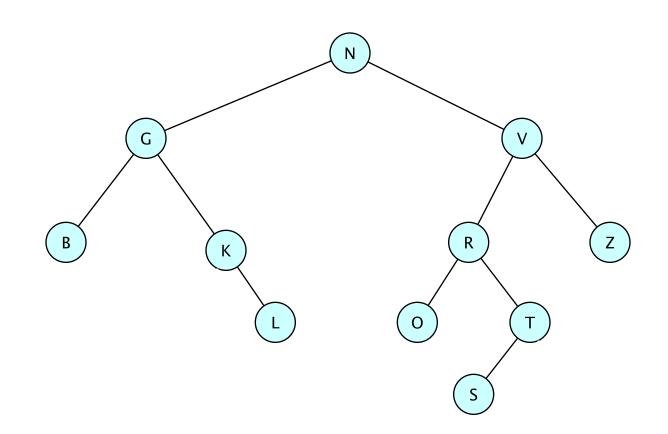
return value.equals(possibleLocation.value());

First (Bad) Attempt: add(E value)

```
public void add(E value) {
       BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
       if (root.isEmpty()) root = newNode;
       else {
               BinaryTree<E> insertLocation = locate(root,value);
               E nodeValue = insertLocation.value();
       if (ordering.compare(nodeValue,value) < 0)
               insertLocation.setRight(newNode);
       else
               insertLocation.setLeft(newNode);
        }
       count++;
}
```

Problem: If repeated values are allowed, left subtree might not be empty when setLeft is called

Add: Repeated Nodes



Where would a new K be added? A new V?

Add Duplicate to Predecessor

- If insertLocation has a left child then
 - Find insertLocation's predecessor
 - Predecessor: item stored immeditately "before" value in true
 - Add repeated node as right child of predecessor
 - If insertLocation has a left subtree that's where Predecessor will be
 - Rightmost item in the left subtree

Corrected Version: add(E value)

```
BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {
```

```
BinaryTree<E> insertLocation = locate(root,value);
```

```
E nodeValue = insertLocation.value();
```

if (ordering.compare(nodeValue,value) < 0)</pre>

```
insertLocation.setRight(newNode);
```

```
else
```

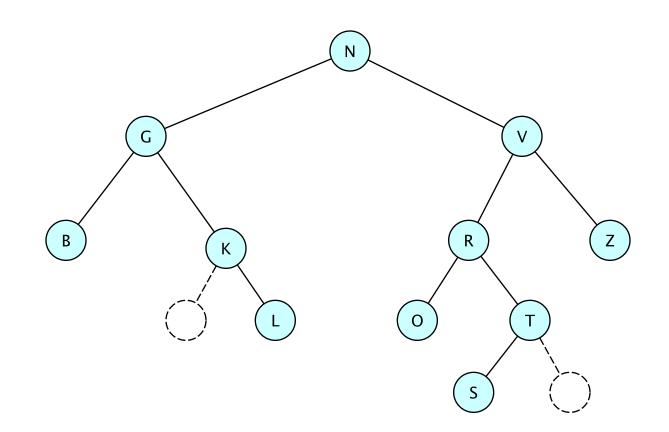
```
if (insertLocation.left().isEmpty())
    insertLocation.setLeft(newNode);
else
    // if value is in tree, we insert just before
```

```
predecessor(insertLocation).setRight(newNode);
```

}

count++;

How to Find Predecessor



Where would a new K be added? A new V?

Predecessor

```
protected BinaryTree<E> predecessor(BinaryTree<E> root) {
    Assert.pre(!root.isEmpty(), "Root has predecessor");
    Assert.pre(!root.left().isEmpty(), "Root has left child.");
```

BinaryTree<E> result = root.left();

```
while (!result.right().isEmpty())
  result = result.right();
```

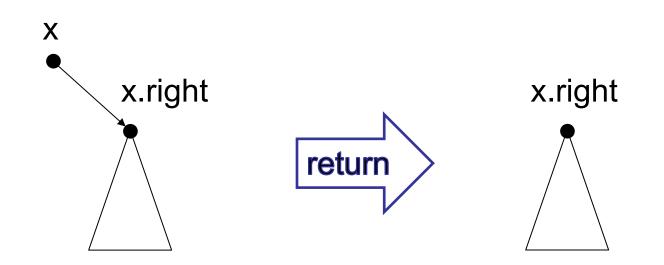
```
return result;
```

}

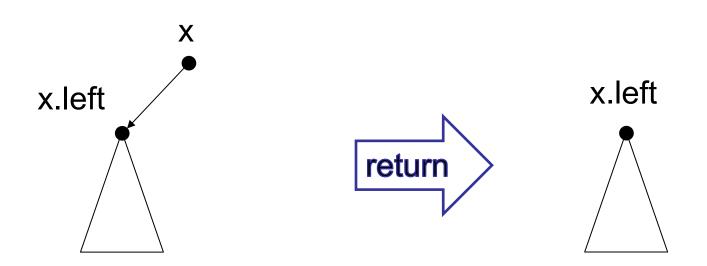
Removal

- Removing the root is a (not so) special case
- Let's figure that out first
 - If we can remove the root, we can remove any element in a BST in the same way
 - Do you believe me?
- We need to implement:
 - public E remove(E item)
 - protected BT removeTop(BT top)

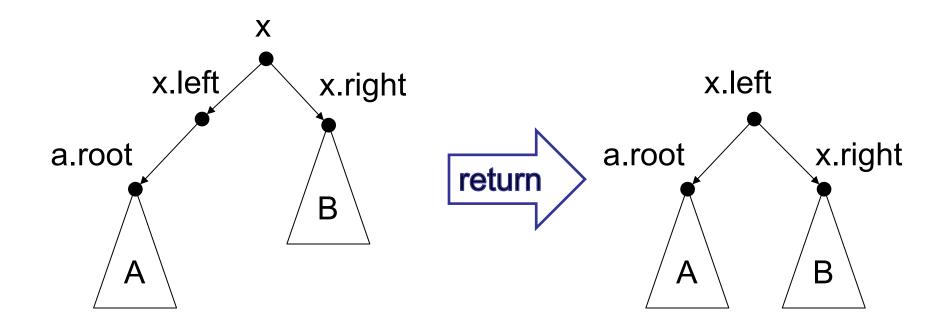
Case I: No left binary tree



Case 2: No right binary tree



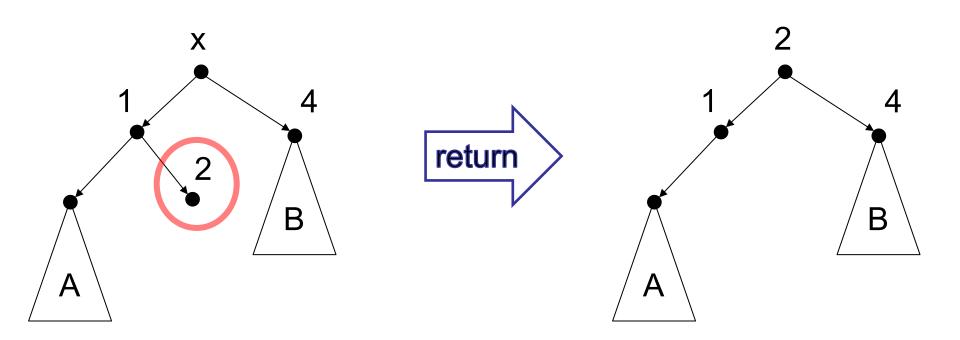
Case 3: Left has no right subtree



Case 4: General Case

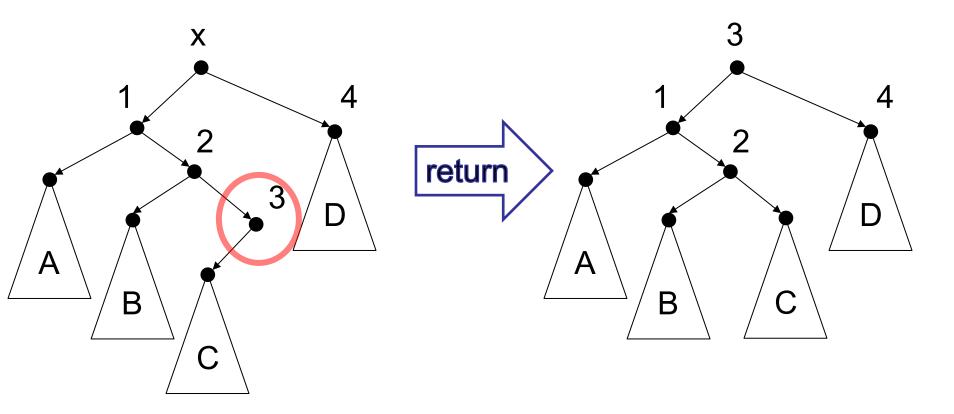
- Consider BST requirements:
 - Left subtree must be <= root
 - Right subtree must be > root
- Strategy: replace the root with the largest value that is less than or equal to it
 - predecessor(root) : rightmost left descendant
- This may require reattaching the predecessor's left subtree!

Case 4: General Case



Replace root with predecessor(root), then patch up the remaining tree

Case 4: General Case



Replace root with predecessor(root), then patch up the remaining tree

RemoveTop(topNode)

Detach left and right sub-trees from root (i.e. topNode) If either left or right is empty, **return** the other one If left has no right child

make right the right child of left then **return** left Otherwise find largest node C in left

// C is the right child of its own parent P

// C is the predecessor of right (ignoring topNode)
Detach C from P; make C's left child the right child of P
Make C new root with left and right as its sub-trees

But What About Height?

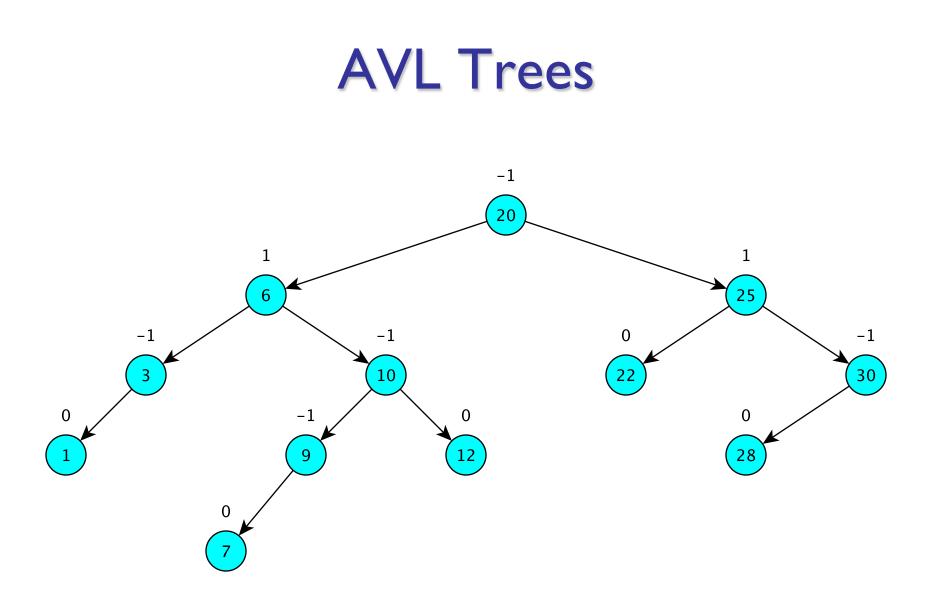
- Can we design a binary search tree that is always "shallow"?
- Yes! In many ways. Here's one
- AVL trees
 - Named after its two inventors, G.M. Adelson-Velsky and E.M. Landis, who published a paper about AVL trees in 1962 called "An algorithm for the organization of information"

AVL Trees

One of the first balanced binary tree structures

Definition: A binary tree T is an AVL tree if

- I. T is the empty tree, or
- 2. T has left and right sub-trees T_L and T_R such that
 - a) The heights of T_L and T_R differ by at most I, and
 - b) T_L and T_R are AVL trees



AVL Trees

- Balance Factor of a binary tree node:
 - height of right subtree minus height of left subtree.
 - A node with balance factor 1, 0, or -1 is considered balanced.
 - A node with any other balance factor is considered unbalanced and requires rebalancing the tree.
- Alternate Definition: An AVL Tree is a binary tree in which every node is balanced.

AVL Trees have O(log n) Height

Theorem: An AVL tree on n nodes has height O(log n)

Proof idea

- Show that an AVL tree of height h has at least fib(h) nodes (classic induction proof---try it!)
- Recall (HW): $fib(h) \ge (3/2)^h$ if $h \ge 10$
- So $n \ge (3/2)^h$ and thus $\log_{3/2} n \ge h$
 - Recall that for any a, b > 0, $\log_a n = \frac{\log_b n}{\log_b a}$
 - So $\log_a n$ and $\log_b n$ are Big-O of one another
- So h is O(log n)

We used Fibonacci numbers in a data structures proof!!!

AVL Trees

If adding to an AVL tree creates an unbalanced node A, we rebalance the subtree with root A

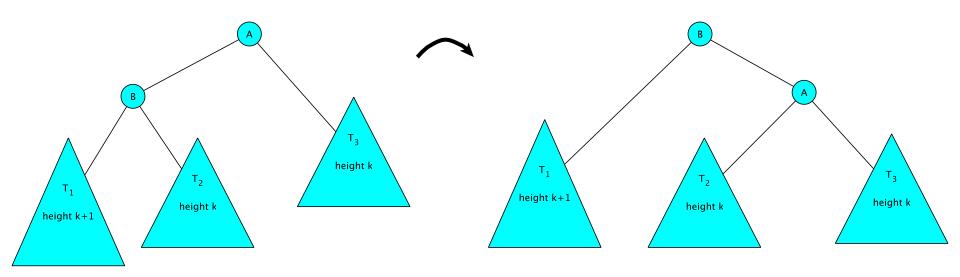
This involves a constant-time restructuring of part of the tree with root NA

The rebalancing steps are called *tree rotations*

Tree rotations preserve binary search tree structure

Single Right Rotation

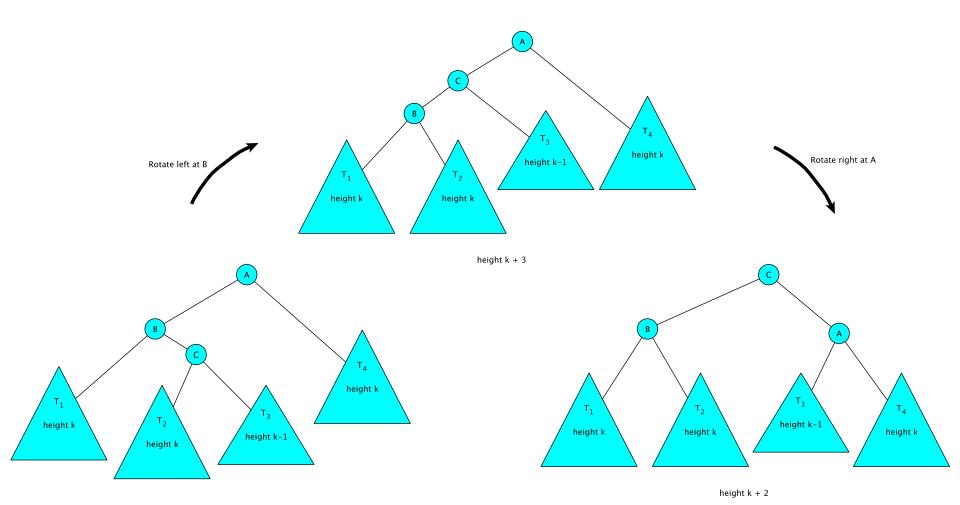
Assume A is unbalanced but its subtrees are AVL...



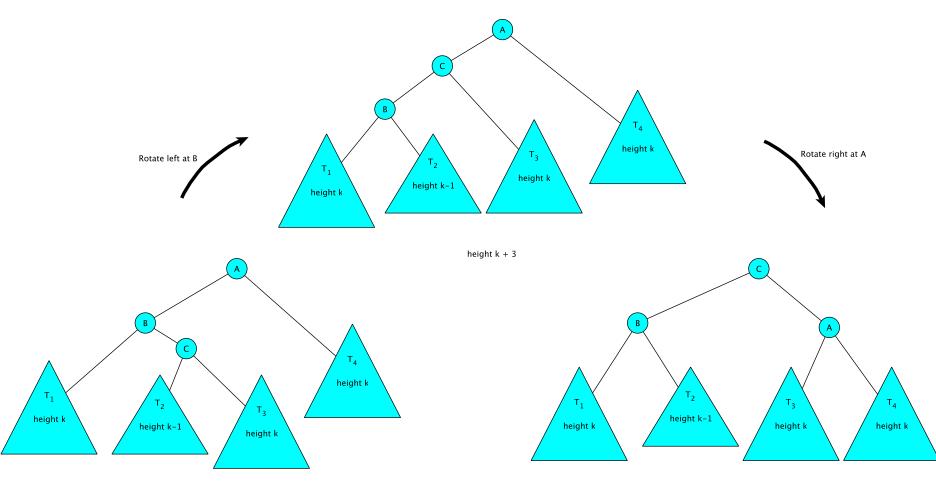
height k + 3

height k + 2

Double Rotation I



height k + 3



height k + 2

height k + 3

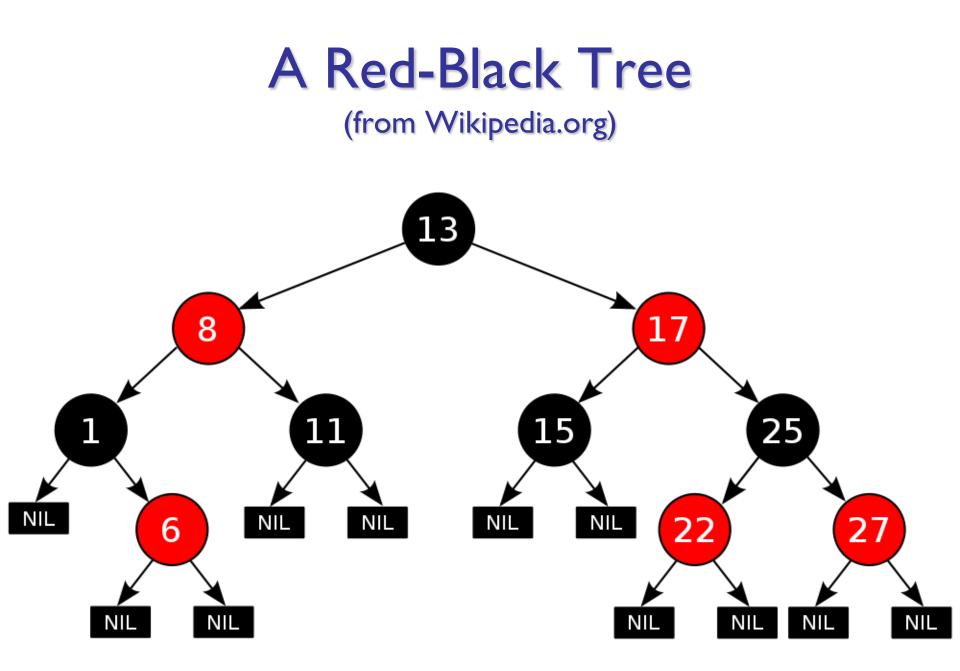
AVL Tree Facts

- A tree that is AVL except at root, where root balance factor equals ±2 can be rebalanced with at most 2 rotations
- add(v) requires at most O(log n) balance factor changes and one (single or double) rotation to restore AVL structure
- remove(v) requires at most O(log n) balance factor changes and (single or double) rotations to restore AVL structure
- An AVL tree on n nodes has height O(log n)

AVL Trees: One of Many

There are many strategies for tree balancing to preserve O(log n) height, including

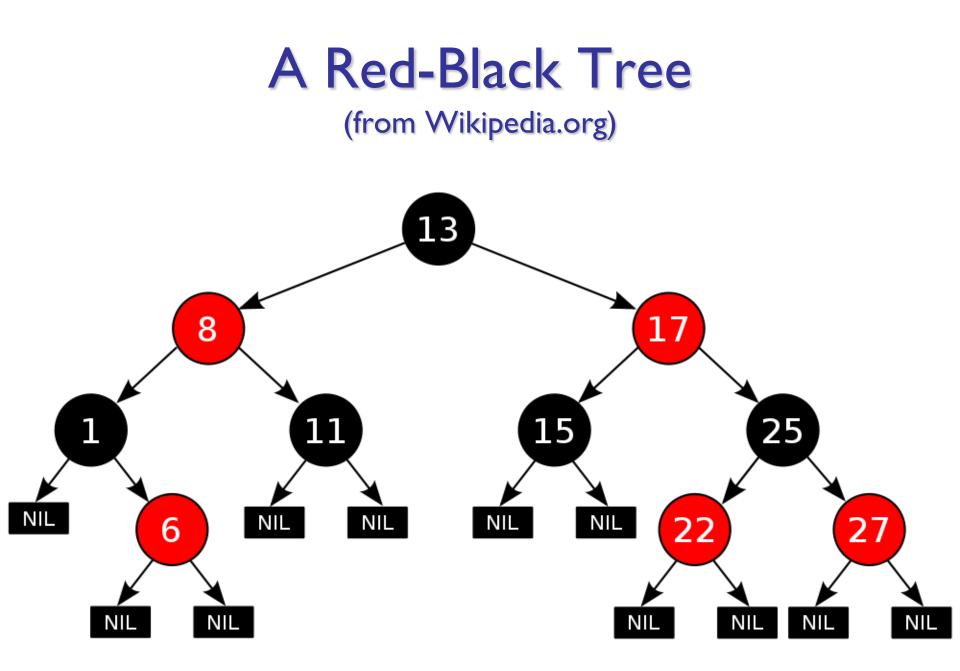
- AVL Trees: guaranteed O(log n) height
- Red-black trees: guaranteed O(log n) height
- B-trees (not binary): guaranteed O(log n) height
 - 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...
- Splay trees: Amortized O(log n) time operations
- Randomized trees: O(log n) expected height



Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness

- Each node is colored red or black
- Coloring satisfies these rules
 - All empty trees are black
 - We consider them to be the leaves of the tree
 - Children of red nodes are black
 - All paths from a given node to it's descendent leaves have the same number of black nodes
 - This is called the *black height* of the node



Red-Black Trees

- The coloring rules lead to the following result
- Proposition: No leaf has depth more than twice that of any other leaf.
- This in turn can be used to show
- Theorem: A Red-Black tree with n internal nodes has height satisfying $h \le 2\log(n+1)$
 - Note: The tree will have exactly n+1 (empty) leaves
 - since each internal node has two children

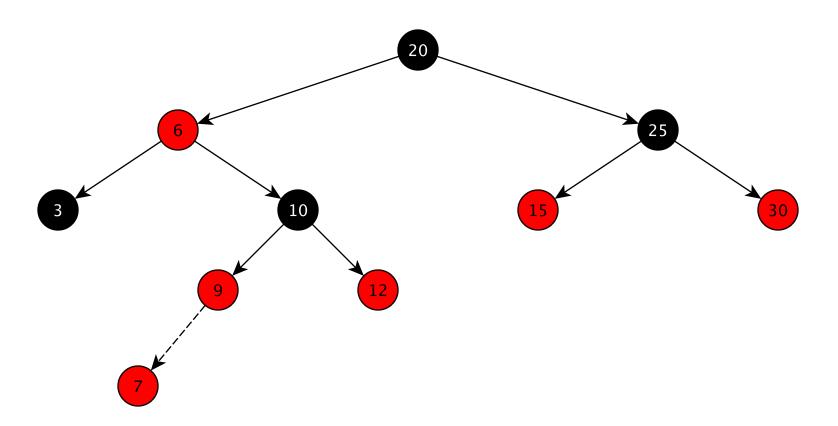
Red-Black Trees

- Theorem: A Red-Black tree with n *internal* nodes has height satisfying $h \le 2 \log(n + 1)$
- Proof sketch: Note: we count empty tree nodes!
- If root is red, recolor it black.
- Now merge red children into (black) parents
 - Now n' \leq n nodes and height h' \geq h/2
- New tree has all children with degree 2, 3, or 4
 - All leaves have depth exactly h' and there are n+1 leaves

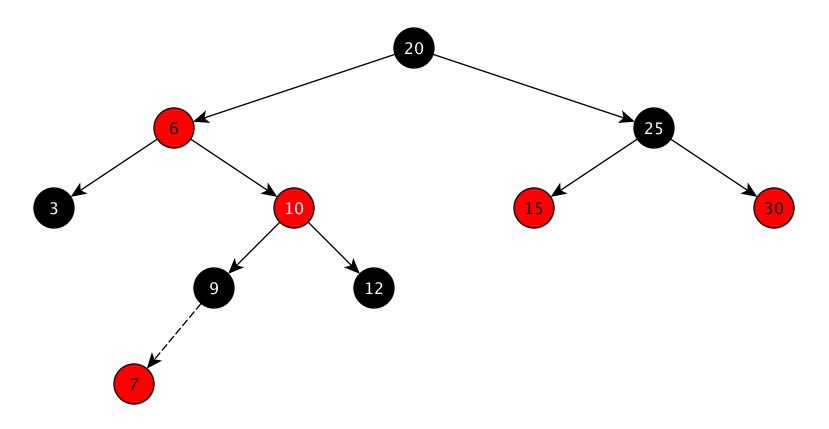
• So
$$n + 1 \ge 2^{h'}$$
, so $\log_2(n + 1) \ge h' \ge \frac{h}{2}$

• Thus $2 \log_2(n+1) \ge h$

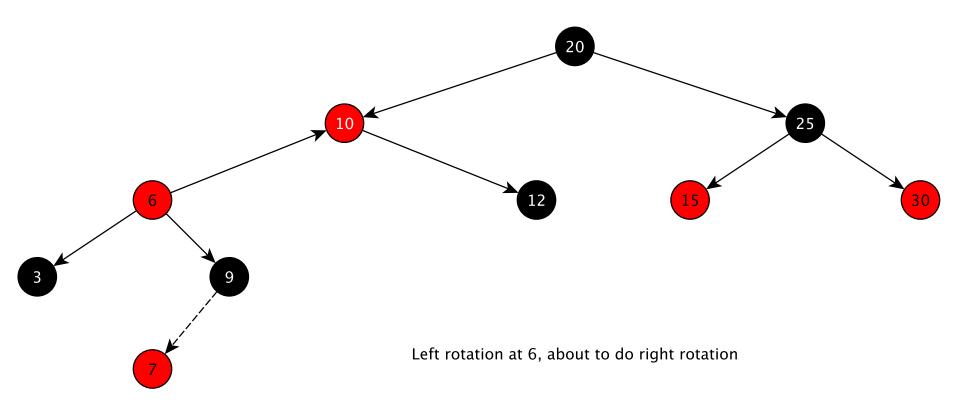
Corollary: R-B trees with n nodes have height O(log n)

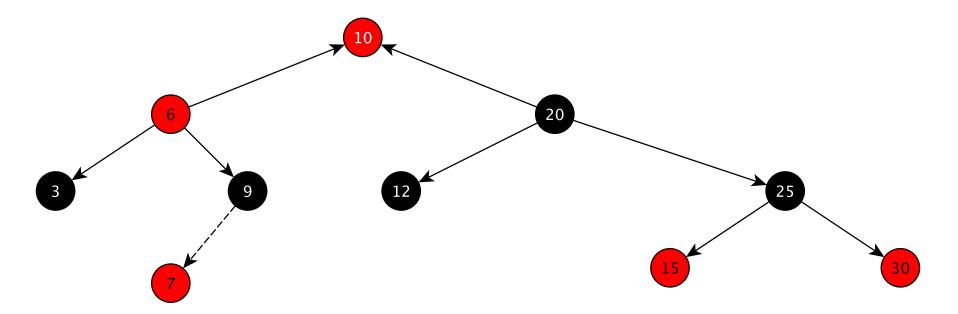


Black empty leaves not drawn. 7 just added Black-height still 2.

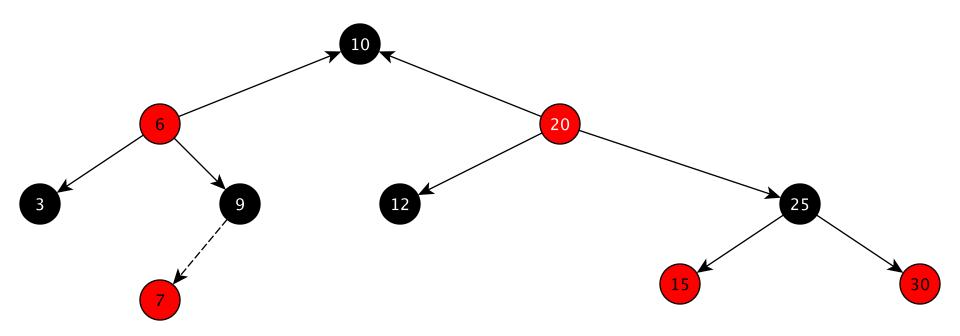


Black height still 2, color violation moved up





Right rotation at 20, black height broken, need to recolor



Color conditions restored, black-height restored.

Splay Trees

Splay trees are self-adjusting binary trees

- Each time a node is accessed, it is moved to root position via rotations
- No metadata at all. Just rotate up each element you access

Splay Trees

Splay trees are self-adjusting binary trees

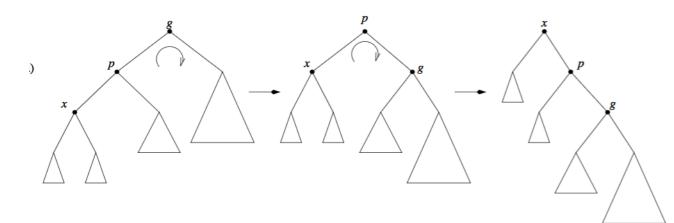
- Each time a node is accessed, it is moved to root position via rotations
- No guarantee of balance (or shallow height)
- But good *amortized* performance

Theorem: Any set of m operations (add, remove, contains, get) on an n-node splay tree take at most O(m log n) time.

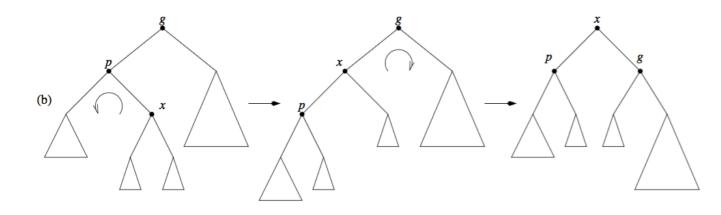
• As good as an AVL or Red-Black Tree!

Splay Tree Rotations

Right Zig-Zig Rotation (left version too)



Right Zig-Zag Rotation (left version too)



 Conjecture: For any sequence of access operations, if the best possible Binary Search Tree takes X operations, then a splay tree takes O(X) operations

 Essentially: keeping no metadata, and with no knowledge of the future, splay trees do as well as a perfect tree that knows the whole sequence in advance

 Conjecture: For any sequence of access operations, if the best possible Binary Search Tree takes X operations, then a splay tree takes O(X) operations

 One consequence would be: splay trees can handle stack or queue operations in O(I) average operations like a DLL

- Open since 1985
- Recent progress [Levy Tarjan 2019]: if a splay tree's performance only improves when we remove operations, then the splay tree is dynamically optimal

• Some really cool math in this area

