
CSCI 136
Data Structures &

Advanced Programming

Lecture 25
Fall 2019

Instructor: Bill & Sam

2

Administrative Details

• Problem Set 3 due now
• Hand in at the end of class
• Late days are an option

• Lab 8 due Sunday (9 out right after)

3

Today

• Introduction to Binary Search Trees (BSTs)

4

Improving on OrderedVector

• The OrderedVector class provides O(log n)
time searching for a group of n comparable
objects
• add() and remove(), though, take O(n) time in the

worst case---and on average!

• Can we improve on those running times
without sacrificing the O(log n) search time?

• Let’s find out....

5

Binary Trees and Orders

• Binary trees impose multiple orderings on
their elements (pre-/in-/post-/level-orders)

• In particular, in-order traversal suggests a
natural way to hold comparable items
• For each node v in tree

• All values in left subtree of v are at most v

• All values in right subtree of v are at least v

• This leads us to...

6

Binary Search Trees

• Binary search trees maintain a total ordering
among elements (assumes comparability)

• Definition: A BST T is either:
• Empty
• Has root r with subtrees TL and TR such that

• All nodes in TL have smaller value than r
• All nodes in TR have larger value than r
• TL and TR are also BSTs

7

BST Observations

• The same data can be represented by many
BST shapes

• Searching for a value in a BST takes time
proportional to the height of the tree
• Reminder: trees have height, nodes have depth

• Additions to a BST happen at nodes missing at
least one child (a constraint!)

• Removing from a BST can involve any node

8

BST Operations

• BSTs will implement the OrderedStructure Interface
• add(E item)
• contains(E item)
• get(E item)
• remove(E item)

• Runtime of above operations?
• All O(h) – where h is the tree height

• iterator()
• This will provide an in-order traversal

9

BST Implementation

• The BST holds the following items
• BinaryTree root: the root of the tree
• BinaryTree EMPTY: a static empty BinaryTree

• To use for all empty nodes of tree

• int count: the number of nodes in the BST
• Comparator<E> ordering: for comparing nodes

• Note: E must implement Comparable

• Two constructors: One takes a Comparator
• Other creates a NaturalComparatot

10

BST Implementation: locate

• Several methods search the tree
• add, remove, contains

• We factor out common code: locate method
• protected locate(BinaryTree<E> node, E v)
• Returns a BinaryTree<E> in the subtree with

root n such that either
• n has its value equal to v, or
• v is not in this subtree and n is the node whose child

v should be

• How would we implement locate()?

11

BST Implementation: locate

BinaryTree locate(BinaryTree root, E val)
if root’s value equals val return root

child ç child of root whose subtree should
hold val

if child is emptry tree, return root
// val not in subtree based at root

else //keep looking
return locate(child, val)

12

BST Implementation: locate

• What about this line?
child ç child of root whose subtree should hold value

• If the tree can have multiple nodes with
same value, then we need to be careful

• Convention: During add operation, only
move to right subtree if value to be added is
greater than value at node

• We’ll look at add later
• Let’s look at locate now....

13

The code : locate
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {

E rootValue = root.value();
BinaryTree<E> child;

// found at root: done
if (rootValue.equals(value)) return root;

// look left if less-than, right if greater-than
if (ordering.compare(rootValue,value) < 0)

child = root.right();
else

child = root.left();

// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) return root;
else

return locate(child, value);
}

14

Other core BST methods

• locate(v) returns either a node containing v or a
node where v can be added as a child

• locate() is used by
• public boolean contains(E value)
• public E get(E value)
• public void add(E value)
• Public void remove(E value)

• Some of these also use another utility method
• protected BT predecessor(BT root)

• Let’s look at contains() first...

15

Contains

public boolean contains(E value){
if (root.isEmpty()) return false;

BinaryTree<E> possibleLocation = locate(root,value);

return value.equals(possibleLocation.value());
}

16

First (Bad) Attempt: add(E value)
public void add(E value) {

BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();

if (ordering.compare(nodeValue,value) < 0)
insertLocation.setRight(newNode);

else
insertLocation.setLeft(newNode);

}
count++;

}

Problem: If repeated values are allowed, left subtree might
not be empty when setLeft is called

17

Add: Repeated Nodes

18

Add Duplicate to Predecessor

• If insertLocation has a left child then
• Find insertLocation’s predecessor
• Predecessor: item stored immeditately “before”

value in true
• Add repeated node as right child of predecessor

• If insertLocation has a left subtree that’s where
Predecessor will be
• Rightmost item in the left subtree

19

Corrected Version: add(E value)
BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();
if (ordering.compare(nodeValue,value) < 0)

insertLocation.setRight(newNode);
else

if (insertLocation.left().isEmpty())
insertLocation.setLeft(newNode);

else
// if value is in tree, we insert just before
predecessor(insertLocation).setRight(newNode);

}
count++;

20

How to Find Predecessor

21

Predecessor

protected BinaryTree<E> predecessor(BinaryTree<E> root) {
Assert.pre(!root.isEmpty(), ”Root has predecessor");
Assert.pre(!root.left().isEmpty(),"Root has left child.");

BinaryTree<E> result = root.left();

while (!result.right().isEmpty())
result = result.right();

return result;
}

22

Removal

• Removing the root is a (not so) special case
• Let’s figure that out first
• If we can remove the root, we can remove any

element in a BST in the same way
• Do you believe me?

• We need to implement:
• public E remove(E item)
• protected BT removeTop(BT top)

23

Case 1: No left binary tree

x

x.right x.right

24

Case 2: No right binary tree

x

x.left x.left

25

Case 3: Left has no right subtree

x.left

a.root

A

x

x.right

B

x.left

a.root

A

x.right

B

26

Case 4: General Case

• Consider BST requirements:
• Left subtree must be <= root
• Right subtree must be > root

• Strategy: replace the root with the largest
value that is less than or equal to it
• predecessor(root) : rightmost left descendant

• This may require reattaching the predecessor’s
left subtree!

27

Case 4: General Case

1

2

A

x

4

B

Replace root with predecessor(root),
then patch up the remaining tree

1

A

2

4

B

28

Case 4: General Case

Replace root with predecessor(root),
then patch up the remaining tree

1
2

A

x

4

D

B

C

3

1
2

A

3

4

D

B C

29

RemoveTop(topNode)

Detach left and right sub-trees from root (i.e. topNode)
If either left or right is empty, return the other one
If left has no right child

make right the right child of left then return left
Otherwise find largest node C in left

// C is the right child of its own parent P

// C is the predecessor of right (ignoring topNode)
Detach C from P; make C’s left child the right child of P
Make C new root with left and right as its sub-trees

30

But What About Height?

• Can we design a binary search tree that is
always “shallow”?

• Yes! In many ways. Here’s one
• AVL trees
• Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper
about AVL trees in 1962 called "An algorithm for
the organization of information"

31

One of the first balanced binary tree structures

Definition: A binary tree T is an AVL tree if

1. T is the empty tree, or

2. T has left and right sub-trees TL and TR such that

a) The heights of TL and TR differ by at most 1, and

b) TL and TR are AVL trees

AVL Trees

32

AVL Trees

33

• Balance Factor of a binary tree node:

• height of right subtree minus height of left subtree.

• A node with balance factor 1, 0, or -1 is considered
balanced.

• A node with any other balance factor is considered
unbalanced and requires rebalancing the tree.

• Alternate Definition: An AVL Tree is a binary tree in
which every node is balanced.

AVL Trees

34

AVL Trees have O(log n) Height
Theorem: An AVL tree on n nodes has height O(log n)

Proof idea

• Show that an AVL tree of height h has at least fib(h)
nodes (classic induction proof---try it!)

• Recall (HW): 𝑓𝑖𝑏 ℎ ≥ (⁄())+ if h ≥ 10

• So 𝑛 ≥ (⁄())+ and thus log ⁄0 1
𝑛 ≥ ℎ

• Recall that for any 𝑎, 𝑏 > 0, log6 𝑛 =
89:; <
89:; 6

• So log6 𝑛 and log= 𝑛 are Big-O of one another

• So h is O(log n)
We used Fibonacci numbers in a data structures proof!!!

35

If adding to an AVL tree creates an unbalanced node A,
we rebalance the subtree with root A

This involves a constant-time restructuring of part of
the tree with root NA

The rebalancing steps are called tree rotations

Tree rotations preserve binary search tree structure

AVL Trees

36

Single Right Rotation

Assume A is unbalanced but its subtrees are AVL…

37

Double Rotation I

38

Double Rotation II

39

AVL Tree Facts
• A tree that is AVL except at root, where root

balance factor equals ±2 can be rebalanced
with at most 2 rotations

• add(v) requires at most O(log n) balance
factor changes and one (single or double)
rotation to restore AVL structure

• remove(v) requires at most O(log n) balance
factor changes and (single or double) rotations
to restore AVL structure

• An AVL tree on n nodes has height O(log n)

40

AVL Trees: One of Many

There are many strategies for tree balancing to
preserve O(log n) height, including
• AVL Trees: guaranteed O(log n) height
• Red-black trees: guaranteed O(log n) height
• B-trees (not binary): guaranteed O(log n) height
• 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

• Splay trees: Amortized O(log n) time operations
• Randomized trees: O(log n) expected height

41

A Red-Black Tree
(from Wikipedia.org)

42

Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness
• Each node is colored red or black

• Coloring satisfies these rules
• All empty trees are black

• We consider them to be the leaves of the tree

• Children of red nodes are black
• All paths from a given node to it’s descendent leaves

have the same number of black nodes
• This is called the black height of the node

43

A Red-Black Tree
(from Wikipedia.org)

44

Red-Black Trees

The coloring rules lead to the following result
Proposition: No leaf has depth more than twice
that of any other leaf.
This in turn can be used to show
Theorem: A Red-Black tree with n internal nodes
has height satisfying ℎ ≤ 2 log(𝑛 + 1)

• Note: The tree will have exactly n+1 (empty) leaves
• since each internal node has two children

45

Red-Black Trees
Theorem: A Red-Black tree with n internal nodes has
height satisfying ℎ ≤ 2 log(𝑛 + 1)
Proof sketch: Note: we count empty tree nodes!
• If root is red, recolor it black.
• Now merge red children into (black) parents

• Now n’ ≤ n nodes and height h’ ≥ h/2

• New tree has all children with degree 2, 3, or 4
• All leaves have depth exactly h’ and there are n+1 leaves

• So 𝑛 + 1 ≥ 2+I , so log) 𝑛 + 1 ≥ ℎJ ≥ +
)

• Thus 2 log) 𝑛 + 1 ≥ ℎ
Corollary: R-B trees with n nodes have height O(log n)

46

Red-Black Tree Insertion

47

Red-Black Tree Insertion

48

Red-Black Tree Insertion

49

Red-Black Tree Insertion

50

Red-Black Tree Insertion

51

Splay Trees

Splay trees are self-adjusting binary trees
• Each time a node is accessed, it is moved to

root position via rotations
• No metadata at all. Just rotate up each element

you access

52

Splay Trees

Splay trees are self-adjusting binary trees
• Each time a node is accessed, it is moved to

root position via rotations
• No guarantee of balance (or shallow height)
• But good amortized performance
Theorem: Any set of m operations (add, remove,
contains, get) on an n-node splay tree take at
most O(m log n) time.
• As good as an AVL or Red-Black Tree!

53

Splay Tree Rotations

Right Zig-Zig Rotation (left version too)

Right Zig-Zag Rotation (left version too)

54

Dynamic Optimality

• Conjecture: For any sequence of access
operations, if the best possible Binary Search
Tree takes X operations, then a splay tree
takes O(X) operations

• Essentially: keeping no metadata, and with no
knowledge of the future, splay trees do as well
as a perfect tree that knows the whole
sequence in advance

55

Dynamic Optimality

• Conjecture: For any sequence of access
operations, if the best possible Binary Search
Tree takes X operations, then a splay tree
takes O(X) operations

• One consequence would be: splay trees can
handle stack or queue operations in O(1)
average operations like a DLL

56

Dynamic Optimality

• Open since 1985
• Recent progress [Levy Tarjan 2019]: if a splay

tree’s performance only improves when we
remove operations, then the splay tree is
dynamically optimal

57

Dynamic Optimality

• Some really cool math in this area

