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Administrative Details

• Problem Set 3 due now
• Hand in at the end of class
• Late days are an option

• Lab 8 due Sunday (9 out right after)
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Today

• Introduction to Binary Search Trees (BSTs)
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Improving on OrderedVector

• The OrderedVector class provides O(log n) 
time searching for a group of n comparable 
objects
• add() and remove(), though, take O(n) time in the 

worst case---and on average!

• Can we improve on those running times 
without sacrificing the O(log n) search time?

• Let’s find out....
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Binary Trees and Orders

• Binary trees impose multiple orderings on 
their elements (pre-/in-/post-/level-orders)

• In particular, in-order traversal suggests a 
natural way to hold comparable items
• For each node v in tree

• All values in left subtree of v are at most v

• All values in right subtree of v are at least v

• This leads us to...
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Binary Search Trees

• Binary search trees maintain a total ordering 
among elements (assumes comparability)

• Definition: A BST T is either:
• Empty
• Has root r with subtrees TL and TR such that

• All nodes in TL have smaller value than r
• All nodes in TR have larger value than r
• TL and TR are also BSTs
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BST Observations

• The same data can be represented by many 
BST shapes

• Searching for a value in a BST takes time 
proportional to the height of the tree
• Reminder: trees have height, nodes have depth

• Additions to a BST happen at nodes missing at 
least one child (a constraint!)

• Removing from a BST can involve any node
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BST Operations

• BSTs will implement the OrderedStructure Interface
• add(E item)
• contains(E item)
• get(E item)
• remove(E item)

• Runtime of above operations?
• All O(h) – where h is the tree height

• iterator()
• This will provide an in-order traversal
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BST Implementation

• The BST holds the following items
• BinaryTree root: the root of the tree
• BinaryTree EMPTY: a static empty BinaryTree

• To use for all empty nodes of tree

• int count: the number of nodes in the BST
• Comparator<E> ordering: for comparing nodes

• Note: E must implement Comparable

• Two constructors: One takes a Comparator
• Other creates a NaturalComparatot
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BST Implementation: locate

• Several methods search the tree
• add, remove, contains

• We factor out common code: locate method
• protected locate(BinaryTree<E> node, E v)
• Returns a BinaryTree<E> in the subtree with 

root n such that either
• n has its value equal to v, or
• v is not in this subtree and n is the node whose child 

v should be

• How would we implement locate()?
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BST Implementation: locate

BinaryTree locate(BinaryTree root, E val)
if root’s value equals val return root

child ç child of root whose subtree should
hold val

if child is emptry tree, return root
// val not in subtree based at root

else //keep looking
return locate(child, val)
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BST Implementation: locate

• What about this line?
child ç child of root whose subtree should hold value

• If the tree can have multiple nodes with 
same value, then we need to be careful

• Convention: During add operation, only 
move to right subtree if value to be added is 
greater than value at node

• We’ll look at add later
• Let’s look at locate now....
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The code : locate
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {

E rootValue = root.value();
BinaryTree<E> child;

// found at root: done
if (rootValue.equals(value)) return root;

// look left if less-than, right if greater-than
if (ordering.compare(rootValue,value) < 0)

child = root.right();
else

child = root.left();

// no child there: not in tree, return this node,
// else keep searching
if (child.isEmpty()) return root;
else

return locate(child, value);
}



14

Other core BST methods

• locate(v) returns either a node containing v or a 
node where v can be added as a child

• locate() is used by 
• public boolean contains(E value)
• public E get(E value)
• public void add(E value)
• Public void remove(E value)

• Some of these also use another utility method
• protected BT predecessor(BT root)

• Let’s look at contains() first...



15

Contains

public boolean contains(E value){
if (root.isEmpty()) return false;

BinaryTree<E> possibleLocation = locate(root,value);

return value.equals(possibleLocation.value());
}



16

First (Bad) Attempt: add(E value)
public void add(E value) {

BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();

if (ordering.compare(nodeValue,value) < 0)
insertLocation.setRight(newNode);

else
insertLocation.setLeft(newNode);

}
count++; 

}

Problem: If repeated values are allowed, left subtree might 
not be empty when setLeft is called
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Add: Repeated Nodes
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Add Duplicate to Predecessor

• If insertLocation has a left child then
• Find insertLocation’s predecessor
• Predecessor: item stored immeditately “before” 

value in true
• Add repeated node as right child of predecessor

• If insertLocation has a left subtree that’s where 
Predecessor will be
• Rightmost item in the left subtree
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Corrected Version: add(E value)
BinaryTree<E> newNode = new BinaryTree<E>(value,EMPTY,EMPTY);
if (root.isEmpty()) root = newNode;
else {

BinaryTree<E> insertLocation = locate(root,value);
E nodeValue = insertLocation.value();
if (ordering.compare(nodeValue,value) < 0)

insertLocation.setRight(newNode);
else

if (insertLocation.left().isEmpty())
insertLocation.setLeft(newNode);

else 
// if value is in tree, we insert just before
predecessor(insertLocation).setRight(newNode);

}
count++;
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How to Find Predecessor



21

Predecessor

protected BinaryTree<E> predecessor(BinaryTree<E> root) {
Assert.pre(!root.isEmpty(), ”Root has predecessor");
Assert.pre(!root.left().isEmpty(),"Root has left child.");

BinaryTree<E> result = root.left();

while (!result.right().isEmpty())
result = result.right();

return result;
}
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Removal

• Removing the root is a (not so) special case
• Let’s figure that out first
• If we can remove the root, we can remove any 

element in a BST in the same way
• Do you believe me?

• We need to implement:
• public E remove(E item)
• protected BT removeTop(BT top)
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Case 1: No left binary tree

x

x.right x.right
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Case 2: No right binary tree

x

x.left x.left
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Case 3: Left has no right subtree

x.left

a.root

A

x

x.right

B

x.left

a.root

A

x.right

B
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Case 4: General Case

• Consider BST requirements:
• Left subtree must be <= root
• Right subtree must be > root

• Strategy: replace the root with the largest 
value that is less than or equal to it
• predecessor(root) : rightmost left descendant

• This may require reattaching the predecessor’s 
left subtree!
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Case 4: General Case

1

2

A

x

4

B

Replace root with predecessor(root),
then patch up the remaining tree

1

A

2

4

B
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Case 4: General Case

Replace root with predecessor(root),
then patch up the remaining tree

1
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RemoveTop(topNode) 

Detach left and right sub-trees from root (i.e. topNode)
If either left or right is empty, return the other one
If left has no right child

make right the right child of left then return left
Otherwise find largest node C  in left

// C is the right child of its own parent P 

// C is the predecessor of right (ignoring topNode)
Detach C from P; make C’s left child the right child of P
Make C new root with left and right as its sub-trees
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But What About Height?

• Can we design a binary search tree that is 
always “shallow”?

• Yes! In many ways. Here’s one
• AVL trees
• Named after its two inventors, G.M. Adelson-

Velsky and E.M. Landis, who published a paper 
about AVL trees in 1962 called "An algorithm for 
the organization of information"
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One of the first balanced binary tree structures

Definition:  A binary tree T is an AVL tree if

1. T is the empty tree, or

2. T has left and right sub-trees TL and TR such that

a) The heights of TL and TR differ by at most 1, and

b) TL and TR are AVL trees

AVL Trees
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AVL Trees
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• Balance Factor of a binary tree node:

• height of right subtree minus height of left subtree. 

• A node with balance factor 1, 0, or -1 is considered 
balanced. 

• A node with any other balance factor is considered 
unbalanced and requires rebalancing the tree. 

• Alternate Definition: An AVL Tree is a binary tree in 
which every node is balanced.

AVL Trees
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AVL Trees have O(log n) Height
Theorem: An AVL tree on n nodes has height O(log n)

Proof idea

• Show that an AVL tree of height h has at least fib(h) 
nodes (classic induction proof---try it!)

• Recall (HW): 𝑓𝑖𝑏 ℎ ≥ ( ⁄( ))+ if h ≥ 10

• So 𝑛 ≥ ( ⁄( ))+ and thus log ⁄0 1
𝑛 ≥ ℎ

• Recall that for any 𝑎, 𝑏 > 0, log6 𝑛 =
89:; <
89:; 6

• So log6 𝑛 and log= 𝑛 are Big-O of one another

• So h is O(log n)
We used Fibonacci numbers in a data structures proof!!!
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If adding to an AVL tree creates an unbalanced node A, 
we rebalance the subtree with root A

This involves a constant-time restructuring of part of 
the tree with root NA

The rebalancing steps are called tree rotations

Tree rotations preserve binary search tree structure

AVL Trees
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Single Right Rotation

Assume A is unbalanced but its subtrees are AVL…
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Double Rotation I
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Double Rotation II
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AVL Tree Facts
• A tree that is AVL except at root, where root 

balance factor equals ±2 can be rebalanced 
with at most 2 rotations

• add(v) requires at most O(log n) balance 
factor changes and one (single or double) 
rotation to restore AVL structure

• remove(v) requires at most O(log n) balance 
factor changes and (single or double) rotations 
to restore AVL structure

• An AVL tree on n nodes has height O(log n)
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AVL Trees: One of Many

There are many strategies for tree balancing to 
preserve O(log n) height, including
• AVL Trees: guaranteed O(log n) height
• Red-black trees: guaranteed O(log n) height
• B-trees (not binary): guaranteed O(log n) height
• 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...

• Splay trees: Amortized O(log n) time operations
• Randomized trees: O(log n) expected height
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A Red-Black Tree
(from Wikipedia.org)
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Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness
• Each node is colored red or black

• Coloring satisfies these rules
• All empty trees are black

• We consider them to be the leaves of the tree

• Children of red nodes are black
• All paths from a given node to it’s descendent leaves 

have the same number of black nodes
• This is called the black height of the node



43

A Red-Black Tree
(from Wikipedia.org)
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Red-Black Trees

The coloring rules lead to the following result
Proposition: No leaf has depth more than twice 
that of any other leaf.
This in turn can be used to show
Theorem: A Red-Black tree with n internal nodes 
has height satisfying ℎ ≤ 2 log(𝑛 + 1)

• Note: The tree will have exactly n+1 (empty) leaves
• since each internal node has two children
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Red-Black Trees
Theorem: A Red-Black tree with n internal nodes has 
height satisfying ℎ ≤ 2 log(𝑛 + 1)
Proof sketch: Note: we count empty tree nodes!
• If root is red, recolor it black.
• Now merge red children into (black) parents

• Now n’ ≤ n nodes and height h’ ≥ h/2

• New tree has all children with degree 2, 3, or 4
• All leaves have depth exactly h’ and there are n+1 leaves

• So 𝑛 + 1 ≥ 2+I , so log) 𝑛 + 1 ≥ ℎJ ≥ +
)

• Thus 2 log) 𝑛 + 1 ≥ ℎ
Corollary: R-B trees with n nodes have height O(log n)
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Red-Black Tree Insertion
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Red-Black Tree Insertion
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Red-Black Tree Insertion
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Red-Black Tree Insertion
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Red-Black Tree Insertion
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Splay Trees

Splay trees are self-adjusting binary trees
• Each time a node is accessed, it is moved to 

root position via rotations
• No metadata at all.  Just rotate up each element 

you access
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Splay Trees

Splay trees are self-adjusting binary trees
• Each time a node is accessed, it is moved to 

root position via rotations
• No guarantee of balance (or shallow height)
• But good amortized performance
Theorem: Any set of m operations (add, remove, 
contains, get) on an n-node splay tree take at 
most O(m log n) time.
• As good as an AVL or Red-Black Tree!
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Splay Tree Rotations

Right Zig-Zig Rotation (left version too)

Right Zig-Zag Rotation (left version too)
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Dynamic Optimality

• Conjecture: For any sequence of access
operations, if the best possible Binary Search 
Tree takes X operations, then a splay tree 
takes O(X) operations

• Essentially: keeping no metadata, and with no 
knowledge of the future, splay trees do as well 
as a perfect tree that knows the whole 
sequence in advance
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Dynamic Optimality

• Conjecture: For any sequence of access
operations, if the best possible Binary Search 
Tree takes X operations, then a splay tree 
takes O(X) operations

• One consequence would be: splay trees can 
handle stack or queue operations in O(1) 
average operations like a DLL
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Dynamic Optimality

• Open since 1985
• Recent progress [Levy Tarjan 2019]: if a splay 

tree’s performance only improves when we 
remove operations, then the splay tree is 
dynamically optimal
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Dynamic Optimality

• Some really cool math in this area


